2023届新高考数学【多选题与双空题满分训练】 专题15新文化多选题 解析版_第1页
2023届新高考数学【多选题与双空题满分训练】 专题15新文化多选题 解析版_第2页
2023届新高考数学【多选题与双空题满分训练】 专题15新文化多选题 解析版_第3页
2023届新高考数学【多选题与双空题满分训练】 专题15新文化多选题 解析版_第4页
2023届新高考数学【多选题与双空题满分训练】 专题15新文化多选题 解析版_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page11页,共=sectionpages33页【多选题与双空题满分训练】专题15新文化多选题2022年高考冲刺和2023届高考复习满分训练新高考地区专用1.(2022·重庆·模拟预测)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有(

)A.将这1864人派谴完需要16天B.第十天派往筑堤的人数为134C.官府前6天共发放1467升大米D.官府前6天比后6天少发放1260升大米【答案】ACD【解析】【分析】记数列为第n天派遣的人数,数列为第n天获得的大米升数,依题意可得是以64为首项,7为公差的等差数列,是以192为首项,21为公差的等差数列,再根据等差数列的通项公式及前项和公式计算可得;【详解】解:记数列为第n天派遣的人数,数列为第n天获得的大米升数,则是以64为首项,7为公差的等差数列,即,是以192为首项,21为公差的等差数列,即,所以,B不正确.设第k天派遣完这1864人,则,解得(负值舍去),A正确;官府前6天共发放升大米,C正确,官府前6天比后6天少发放升大米,D正确.故选:ACD2.(2021·福建厦门·二模)达芬奇的画作《抱银貂的女人》中,女士脖颈上悬挂的黑色珍珠链与主人相互映衬,显现出不一样的美与光泽,达芬奇提出固定项链的两端,使其在重力的作用下自然下垂项链所形成的曲线称为悬链线.建立适当的平面直角坐标系后,得到悬链线的函数解析式为,双曲余弦函数则以下正确的是(

)A.是奇函数 B.在上单调递减C., D.,【答案】BCD【解析】【分析】根据题意写出函数的解析式,由函数奇偶性的定义,即可判断选项A是否正确;根据导数在函数单调性中的应用以及复合函数的单调性,即可判断选项B是否正确;由基本不等式,即可判断选项C是否正确;再根据选项C,结合特称命题的特点,即可判断选项D是否正确.【详解】由题意可知,,定义域为所以,所以是偶函数;故选项A错误;函数的导数为,所以当时,,当时,,所以函数,单调递减区间为,单调递增区间为,又,所以函数在上单调递增,由复合函数的单调性可知,在上单调递减,故选项B正确;由基本不等式可知,,当且仅当时取等号;故选项C正确;由C可知,,,所以,使得成立,故选项D正确;故选:BCD.3.(2021·广东实验中学模拟预测)《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,是《算经十书》中最重要的一部,其中将有三条棱互相平行且有一个面为梯形的五面体称之为“羡除”,则(

)A.“羡除”有且仅有两个面为三角形; B.“羡除”一定不是台体;C.不存在有两个面为平行四边形的“羡除”; D.“羡除”至多有两个面为梯形.【答案】ABC【解析】【分析】画出图形,利用新定义判断A;通过,判断“羡除”一定不是台体,判断B;利用反证法判断C;通过两两不相等,则“羡除”有三个面为梯形,判断D.【详解】由题意知:,四边形为梯形,如图所示:对于A:由题意知:“羡除”有且仅有两个面为三角形,故A正确;对于B:由于,所以:“羡除”一定不是台体,故B正确;对于C:假设四边形和四边形BCDF为平行四边形,则,且,则四边形为平行四边形,与已知的四边形为梯形矛盾,故不存在,故C正确;对于D:若,则“羡除”三个面为梯形,故D错误.故选:ABC.4.(2021·河北沧州·三模)三星堆遗址,位于四川省广汉市,距今约三千到五千年.2021年2月4日,在三星堆遗址祭祀坑区4号坑发现了玉琮.玉琮是一种内圆外方的筒型玉器,是一种古人用于祭祀的礼器.假定某玉琮中间内空,形状对称,如图所示,圆筒内径长,外径长,筒高,中部为棱长是的正方体的一部分,圆筒的外侧面内切于正方体的侧面,则(

)A.该玉琮的体积为() B.该玉琮的体积为()C.该玉琮的表面积为() D.该玉琮的表面积为()【答案】BD【解析】【分析】体积为圆筒体积(外圆柱减去内圆柱体积)加上正方体体积减去内切圆柱体积.组合体的表面包含下面几个部分:外圆柱侧面在正方体外面的部分,正方体上下两个底面去掉其内切圆的部分,圆筒的上下两个底面(两个圆环),正方体的4个侧面,内圆柱的侧面,面积相加可得.【详解】由图可知,组合体的体积().().故选:BD.5.(2022·山东菏泽·二模)设a,b为两个正数,定义a,b的算术平均数为,几何平均数为.上个世纪五十年代,美国数学家D.H.Lehmer提出了“Lehmer均值”,即,其中p为有理数.下列结论正确的是(

)A. B.C. D.【答案】AB【解析】【分析】根据基本不等式比较大小可判断四个选项.【详解】对于A,,当且仅当时,等号成立,故A正确;对于B,,当且仅当时,等号成立,故B正确;对于C,,当且仅当时,等号成立,故C不正确;对于D,当时,由C可知,,故D不正确.故选:AB6.(2022·重庆八中模拟预测)在1261年,我国南宋数学家杨辉所著的《详解九章算法》中提出了如图所示的三角形数表,这就是著名的“杨辉三角”,它是二项式系数在三角形中的一种几何排列.从第1行开始,第行从左至右的数字之和记为,如:,,,的前项和记为,依次去掉每一行中所有的1构成的新数列2,3,3,4,6,4,5,10,10,5,,记为,的前项和记为,则下列说法正确的有(

)A.B.的前项和为C.D.【答案】BCD【解析】【分析】由题意分析出数列为等比数列,再求其前项和,再对各项逐一分析即可.【详解】解:从第一行开始,每一行的数依次对应的二项式系数,,所以为一个等比数列,,所以,故A错误;,的前项和为,故B正确;去掉每一行中的1以后,每一行剩下的项数分别为0,1,2,,构成一个等差数列,项数之和为,则的最大整数为10,杨辉三角中取满了第11行,第12行首位为1,取的就是第12行中的第三项,,故C正确;,这11行中共去掉了22个1,,故D正确,故选:BCD.7.(2022·全国·模拟预测)杨辉三角是中国古代数学的杰出研究成果之一,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.根据杨辉三角判断下列说法正确的是(

)A.B.已知,则C.已知的展开式中第3项与第9项的二项式系数相等,则所有项的系数和为D.【答案】AD【解析】【分析】A选项直接由二项展开式进行判断;B选项令即可判断;C选项先解出,再令即可;D选项直接由公式依次递推即可.【详解】A选项;等式为标准二项展开式的结果,故A正确;B选项:将看成,则,令,则,故B错误;C选项:第3项与第9项的二项式系数相等,可转化为,则,令,则所有项的系数和为,故C错误;D选项:根据杨辉三角得,,,∴,同理可得,故D正确.故选:AD.8.(2022·重庆·模拟预测)“出租车几何”或“曼哈顿距离”(ManhattanDistance)是由十九世纪的赫尔曼·闵可夫斯基所创词汇,是种被使用在几何度量空间的几何学用语.在平面直角坐标系内,对于任意两点、,定义它们之间的“欧几里得距离”,“曼哈顿距离”为,则下列说法正确的是(

)A.若点为线段上任意一点,则为定值B.对于平面上任意一点,若,则动点的轨迹长度为C.对于平面上任意三点、、,都有D.若、为椭圆上的两个动点,则最大值为【答案】AC【解析】【分析】利用题中定理可判断A选项;作出点的轨迹图形,求其周长可判断B选项;利用绝对值三角不等式可判断C选项;设点、,不妨设,,利用辅助角公式结合正弦型函数的有界性可判断D选项.【详解】对于A选项,设点为线段上任意一点,则,A对;对于B选项,设点,则,当,时,则;当,时,则;当,时,则;当,时,则.作出点的轨迹如下图所示:由图可知,点的轨迹是边长为的正方形,故动点的轨迹长度为,B错;对于C选项,设点、、,由绝对值三角不等式可得,同理可得,所以,,即,C对;对于D选项,设点、,不妨设,,则,其中为锐角,且,取,,等号成立,D错.故选:AC.9.(2022·重庆八中模拟预测)在通信工程中广泛运用的二进制只有“0,1”两个数码,二进制数与十进制数的转化方式为:二进制数等于十进制数,其中,,.通信中,信息包含在一串“0,1”序列中,记信息A的位宽为,代表“0,1”编码的数字个数.如,则.用“”表示两条信息的拼接,如,,则.数学家发明了一种信息压缩方法f∶将信息中的“0,1”序列中从左至右,单个出现的数码保持不变,连续出现的个相同的数码“j”,通过二进制下的替换原有数码,如1111000,应视作4个“1”和3个“0”,即压缩为二进制和,所以.下列说法不正确的是(

)A.对任意的信息A,总有B.对于任意的信息A,B,有C.若,则信息A共有4种可能D.若,则【答案】ABC【解析】【分析】根据题目已知条件所给的信息逐一判断即可.【详解】对于选项,若为2个连续的数码,如,,,则不正确;对于选项,当,,,,,则,则不正确;对于选项,,则可以为和,或者和,或者(信息A可以全由0组成),或者和和,或者和,一共5种情况,则不正确;对于选项,,则最多由个相同的数码构成,则,当时,,若时,,不满足条件,故,则正确;故选:.10.(2021·江苏·模拟预测)古希腊著名数学家阿波罗尼斯发现:平面内到两定点A,B的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足=.设点P的轨迹为C,则下列结论正确的是()A.轨迹C的方程为(x+4)2+y2=9B.在x轴上存在异于A,B的两点D,E使得=C.当A,B,P三点不共线时,射线PO是∠APB的平分线D.在C上存在点M,使得【答案】BC【解析】【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.【详解】在平面直角坐标系xOy中,A(-2,0),B(4,0),点P满足,设P(x,y),则,化简得(x+4)2+y2=16,所以A错误;假设在x轴上存在异于A,B的两点D,E使得,设D(m,0),E(n,0),则,化简得3x2+3y2-(8m-2n)x+4m2-n2=0,由轨迹C的方程为x2+y2+8x=0,可得8m-2n=-24,4m2-n2=0,解得m=-6,n=-12或m=-2,n=4(舍去),即在x轴上存在异于A,B的两点D,E使,所以B正确;当A,B,P三点不共线时,,可得射线PO是∠APB的平分线,所以C正确;若在C上存在点M,使得,可设M(x,y),则有=2,化简得x2+y2+x+=0,与x2+y2+8x=0联立,方程组无解,故不存在点M,所以D错误.故选:BC【点睛】关键点睛:运用两点间距离公式是解题的关键.11.(2022·山东·济南市历城第二中学模拟预测)下图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作的典范.该杯的主体部分可以近似看作是双曲线的右支与直线围成的曲边四边形绕y轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为,下底外直径为,双曲线C的左右顶点为,则(

)A.双曲线C的方程为B.双曲线与双曲线C有相同的渐近线C.存在一点,使过该点的任意直线与双曲线C有两个交点D.双曲线C上存在无数个点,使它与两点的连线的斜率之积为3【答案】ABD【解析】【分析】由题意可得,代入双曲线方程可求出,从而可求出双曲线方程,然后逐个分析判断【详解】由题意可得,所以,即,解得,所以双曲线方程为,所以A正确,双曲线的渐近线方程为,双曲线的渐近线方程为,所以B正确,由双曲线的性质可知,过平面内的任意一点的直线与双曲线的渐近线平行时,只与双曲线有一个交点,所以不存在一点,使过该点的任意直线与双曲线C有两个交点,所以C错误,由题意得,设为双曲线上任意一点,则,,所以,所以双曲线C上存在无数个点,使它与两点的连线的斜率之积为3,所以D正确,故选:ABD12.(2022·重庆·模拟预测)阿基米德(公元前287年——公元前212年)是古希腊伟大的物理学家、数学家、天文学家,不仅在物理学方面贡献巨大,还享有“数学之神”的称号.抛物线上任意两点A、B处的切线交于点P,称为“阿基米德三角形”.已知抛物线C:的焦点为F,过A、B两点的直线的方程为,关于“阿基米德三角形”,下列结论正确的是(

)A. B.C.点P的坐标为 D.【答案】ABD【解析】【分析】由直线方程与抛物线方程联立,解得两点的坐标,计算线段的长判断A,利用导数的几何意义求得切线方程,由切线斜率关系判断B,两切线方程联立求得交点的坐标判断C,由直线的斜率关系判断D.【详解】设,,联立,可得,解得或,不妨设,,则,,故,,,A项正确;又因为,所以,故直线PA的斜率为,直线PA的方程为,即,同理可得直线PB的方程为,,所以,B项正确;联立,可得,故点P的坐标为,C项错误;易知点F的坐标为,,,所以,D项正确.故选:ABD.13.(2022·辽宁·育明高中一模)“圆幂定理”是平面几何中关于圆的一个重要定理,它包含三个结论,其中一个是相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.如图,已知圆O的半径为2,点P是圆O内的定点,且,弦AC、BD均过点P,则下列说法正确的是(

)A.为定值 B.的取值范围是C.当时,为定值 D.的最大值为12【答案】AC【解析】【分析】根据题设中的圆幂定理可判断AC的正误,取的中点为,连接,利用向量的线性运算可判断B的正误,根据直径的大小可判断D的正误.【详解】如图,设直线与圆于,.则,故A正确.取的中点为,连接,则,而,故的取值范围是,故B错误.当时,,故C正确.因为,故,故D错误.故选:AC14.(2022·全国·模拟预测)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,的距离之比为定值的点的轨迹是圆”.后来人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.在平面直角坐标系中,,,点满足.点的轨迹为曲线,下列结论正确的是(

)A.曲线的方程为B.曲线被轴截得的弦长为C.直线与曲线相切D.是曲线上任意一点,当的面积最大时点的坐标为【答案】AB【解析】【分析】设,根据,,点满足.求得点的轨迹方程,再逐项判断.【详解】对于选项A,设,由,,可得,所以,整理可得,即,故选项A正确;对于选项B,因为,令得,曲线被轴截得的弦长为,故选项B正确;对于选项C,因为,所以圆心,半径,所以圆心到直线的距离,所以直线与曲线相离,故选项C错误;对于选项D,因为是曲线上任意一点,要使的面积最大,则曲线上的点到轴的距离最大,即的边上的高等于圆的半径时,的面积最大,此时点的坐标为,故选项D错误.故选:AB.15.(2022·福建福建·模拟预测)下图为陕西博物馆收藏的国宝——唐金筐宝钿团花纹金杯,杯身曲线内收,巧夺天工,是唐代金银细作的典范.该杯的主体部分可以近似看作是双曲线的右支与直线,,围成的曲边四边形ABMN绕y轴旋转一周得到的几何体,若该金杯主体部分的上口外直径为,下底外直径为,双曲线C与坐标轴交于D,E,则(

)A.双曲线C的方程为B.双曲线与双曲线C共渐近线C.存在一点,使过该点的任意直线与双曲线C有两个交点D.存在无数个点,使它与D,E两点的连线的斜率之积为3【答案】ABD【解析】【分析】求出、的坐标并代入,求出双曲线方程,再逐项判断可得答案.【详解】依题意可知,,将、的坐标分别代入,得,解得,,所以双曲线C的方程为:,其渐近线为,故A正确;对于B,由,可知其渐近线为,故B正确;对于C,由双曲线的性质可知,渐近线与双曲线没有交点,与渐近线平行的直线与双曲线有一个交点,故不存在点,使过该点的任意直线与双曲线C有两个交点,故C错误;对于D,设双曲线上一点,则,即,由题可知,则,,即存在无数个点,使它与D,E两点的连线的斜率之积为3,故D正确.故选:ABD.16.(2022·湖南永州·二模)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:椭圆的两条切线互相垂直,则两切线的交点位于一个与椭圆同中心的圆上,称此圆为该椭圆的蒙日圆.已知椭圆的离心率为,、分别为椭圆的左、右焦点,点在椭圆上,直线,则(

)A.直线与蒙日圆相切B.的蒙日圆的方程为C.记点到直线的距离为,则的最小值为D.若矩形的四条边均与相切,则矩形的面积的最大值为【答案】AC【解析】【分析】分析可得出,求出蒙日圆的方程,可判断B选项的正误;利用直线与圆的位置关系可判断A选项;利用椭圆的定义和点到直线的距离公式可判断C选项的正误;分析可知矩形的四个顶点都在蒙日圆上,利用基本不等式可判断D选项的正误.【详解】当两切线分别与两坐标轴垂直时,两切线的方程分别为、,所以,点在蒙日圆上,故蒙日圆的方程为,因为,可得.对于A选项,蒙日圆圆心到直线的距离为,所以,直线与蒙日圆相切,A对;对于B选项,的蒙日圆的方程为,B错;对于C选项,由椭圆的定义可得,则,所以,,因为,直线的方程为,点到直线的距离为,所以,,当且仅当时,等号成立,C对;对于D选项,若矩形的四条边均与相切,则矩形的四个顶点都在蒙日圆上,所以,,所以,矩形的面积为,D错.故选:AC.17.(2021·重庆市杨家坪中学模拟预测)英国数学家牛顿在17世纪给出了一种近似求方程根的方法—牛顿迭代法.做法如下:如图,设是的根,选取作为初始近似值,过点作曲线的切线,与轴的交点的横坐标,称是的一次近似值,过点作曲线的切线,则该切线与轴的交点的横坐标为,称是的二次近似值.重复以上过程,得到的近似值序列,其中,称是的次近似值,这种求方程近似解的方法称为牛顿迭代法.若使用该方法求方程的近似解,则(

)A.若取初始近似值为1,则该方程解得二次近似值为B.若取初始近似值为2,则该方程近似解的二次近似值为C.D.【答案】ABC【解析】【分析】根据牛顿迭代法求方程近似解的方法,将初始值代入公式计算即可求解.【详解】令,则,当,,,故A正确;当,,,故B正确;因为;;;,∴,故C正确,D错误.故选:ABC18.(2022·江苏·金陵中学模拟预测)笛卡尔是西方哲学思想的奠基人之一,“我思故我在”便是他提出的著名的哲学命题;同时,笛卡尔也是一位家喻户晓的数学家,除了发明坐标系以外,笛卡尔叶形线也是他的杰出作品,其方程为x3+y3=3axy,a为非零常数.下列关于笛卡尔叶形线的说法中正确的是(

)A.图象关于直线y=x对称B.图象与直线x+y+a=0有2个交点C.当a>0时,图象在第三象限没有分布D.当a=1,x、y>0时,y的最大值为【答案】ACD【解析】【分析】设是曲线上任意一点,由点的变换得方程的变化,从而确定曲线的性质,判断A;用解方程组的思想判断B;用反证法即证明满足的点不在曲线上,判断C;利用基本不等式确定的最大值,判断D.【详解】把互换后,曲线方程不变,因此曲线关于直线对称,A正确;代入曲线方程得,,与矛盾,因此无交点,B错;时,第三象限点满足,但此时,,不适合曲线方程,C正确;时,,,,所以,当且仅当,时等号成立.D正确.故选:ACD19.(2021·山东·泰安一中模拟预测)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走97里,以后每天比前一天少走里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是(

)A.长安与齐国两地相距1530里B.3天后,两马之间的距离为里C.良马从第6天开始返回迎接驽马D.8天后,两马之间的距离为里【答案】AB【解析】【分析】A,设良马第天行走的路程里数为,驽马第天行走的路程里数为,求出良马和驽马各自走的路程即得A正确;B,计算得到3天后,两马之间的距离为里,即可判断B正确;C,计算得到良马前6天共行走了里里,故C不正确;D,计算得到8天后,两马之间的距离为390里,故D不正确.【详解】解:设良马第天行走的路程里数为,驽马第天行走的路程里数为,则.良马这9天共行走了里路程,驽马这9天共行走了里路程,故长安与齐国两地相距里,A正确.3天后,良马共行走了里路程,驽马共行走了里路程,故它们之间的距离为328.5里,B正确.良马前6天共行走了里里,故良马行走6天还末到达齐国,C不正确.良马前7天共行走了里里,则良马从第7天开始返回迎接驽马,故8天后,两马之间的距离即两马第9天行走的距离之和,由,知8天后,两马之间的距离为390里,故D不正确.故选:AB20.(2021·全国·模拟预测)若数列满足,,,则称数列为斐波那契数列,1680年卡西尼发现了斐波那契数列的一个重要性质:().若斐波那契数列满足,则下列结论正确的是(

)A.k可以是任意正奇数B.k可以是任意正偶数C.若k是奇数,则k的最大值是999D.若k是偶数,则k的最大值是500【答案】BC【解析】【分析】由题意,分k为偶数与k为奇数,结合分组并项求和即可求解【详解】由可得.若k为偶数,则,此时,即,k无最大值,可以是任意正偶数,所以B正确,D错误;若k为奇数,则,此时,即,k的最大值为999,所以A错误,C正确;故选:BC.21.(2020·山东青岛·模拟预测)《张丘建算经》是中国古代众多数学名著之一.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何?”其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了9匹3丈,问从第二天起,每天比前一天多织多少尺布?”已知1匹丈,1丈尺,若这个月有30天,记该女子这个月中第天所织布的尺数为,,则(

)A. B.数列是等比数列C. D.【答案】BD【解析】【分析】利用等差数列前项和公式列方程,由此求得,进而求得.由此对选项逐一分析从而确定正确选项.【详解】由题意可知,数列为等差数列,设数列的公差为,首项,则,解得,∴.∵,∴,∴数列是等比数列,B选项正确;∵,∴,A选项错误;,∴,C选项错误;,,∴,D选项正确.故选:BD.22.(2022·北京·101中学模拟预测)根据中国古代重要的数学著作《孙子算经》记载,我国古代诸侯的等级自低到高分为:男、子、伯、侯、公五个等级,现有每个级别的诸侯各一人,君王要把50处领地全部分给5位诸侯,要求每位诸侯都分到领地且级别每高一级就多分处(为正整数),按这种分法,下列结论正确的是(

)A.为“男”的诸侯分到的领地不大于6处的概率是B.为“子”的诸侯分到的领地不小于6处的概率是C.为“伯”的诸侯分到的领地恰好为10处的概率是1D.为“公”的诸侯恰好分到16处领地的概率是【答案】ACD【解析】【分析】由题意可知,五位诸侯分得的领地成等差数列,利用等差数列前项和公式得到的首项和公差,再分类讨论分别求出每种情况中男、子、伯、侯、公五个等级分到的领地数,再利用概率对四个选项逐一分析,即可得正确选项.【详解】由题意可知,五位诸侯分得的领地成等差数列,设其前项和为,则,得.因为,均为正整数,所以有如下几种情况:,,,共4种情况,每种情况各位诸侯分到领地的处数如下表所列:男子伯侯公,89101112,68101214,47101316,26101418由表中数据可知:为“男”的诸侯分到的领地不大于6处的概率是;故选项A正确;为“子”的诸侯分到的领地不小于6处的概率是;故选项B不正确;为“伯”的诸侯分到的领地恰好为10处的概率是;故选项C正确;为“公”的诸侯恰好分到16处领地的概率是,故选项D正确;故选:ACD.23.(2021·全国·模拟预测)数学史上有很多著名的数列,在数学中有着重要的地位.世纪初意大利数学家斐波那契从兔子繁殖问题引出的一个数列:,,,,,,,……,称之为斐波那契数列,满足,,.19世纪法国数学家卢卡斯提出数列:,,,,,,,……,称之为卢卡斯数列,满足,,.那么下列说法正确的有(

)A. B.不是等比数列C. D.【答案】AC【解析】【分析】利用数学归纳法可证得A正确;根据已知等量关系可推导得到,由等比数列定义可知B错误;由推导知C正确;取,可知D错误.【详解】对于A,当时,,等式成立;当时,,等式成立;假设当时,成立,那么当时,,又,,,等式成立;综上所述:成立,A正确;对于B,,,又,是以为首项,为公比的等比数列,B错误;对于C,,,C正确;对于D,取,则,,有,D错误.故选:AC.24.(2021·山东·肥城市教学研究中心模拟预测)巴塞尔问题是一个著名的数论问题,这个问题首先由皮耶特罗·门戈利在1644年提出,由欧拉在1735年解决.由于这个问题难倒了以前许多的数学家,欧拉一解出这个问题,马上就出名了,当时他28岁.这个问题是精确计算所有平方数倒数的和,也就是以下级数的和.巴塞尔问题是寻找这个数的准确值,欧拉发现的准确值是.不过遗憾的是:若把上式中的指数换成其他的数,例如,则的精确值为多少,至今未解决.下列说法正确的是(

)A.所有正奇数的平方倒数和为B.记,则的值为C.的值不超过D.记,则存在正常数,使得对任意正整数,恒有【答案】ABC【解析】【分析】根据题意,依次分析选项,即可得到答案【详解】对于选项A:记,,所以,,选项A正确;对于选项B:,选项B正确;对于选项C:注意到时,,,选项C正确;对于选项D:因为,令,得,所以,即,所以选项D错误.故选:ABC25.(2021·江苏南通·模拟预测)法国数学家柯西(A.Cauchy,研究了函数的相关性质,并证明了在处的各阶导数均为对于函数,有如下判断,其中正确的有(

)A.是偶函数B.在是上单调递减C.D.若恒成立,则的最小值为1【答案】ABD【解析】【分析】根据奇偶性定义可判断A,利用导数与单调性关系即可判断B,结合单调性与奇偶性可判断C,根据函数值域可判断D.【详解】对于A,函数的定义域为,当时,由,故是偶函数,A正确;对于B,当时,,由,所以在是上单调递减,B正确;对于C,由于,在是上单调递减,所以,C错;对于D,因为,所以,故又因为恒成立,所以,则,故D正确.故选:ABD26.(2021·海南·三模)如图所示,“嫦娥五号”月球探测器飞行到月球附近时,首先在以月球球心为圆心的圆形轨道Ⅰ上绕月飞行,然后在点处变轨进入以为一个焦点的椭圆轨道Ⅱ上绕月飞行,最后在点处变轨进入以为圆心的圆形轨道Ⅲ绕月飞行,设圆形轨道Ⅰ的半径为,圆形轨道Ⅲ的半径为,则以下说法正确的是(

)A.椭圆轨道Ⅱ上任意两点距离最大为B.椭圆轨道Ⅱ的焦距为C.若不变,则越大,椭圆轨道Ⅱ的短轴越短D.若不变,则越小椭圆轨道Ⅱ的离心率越大【答案】BD【解析】【分析】根据椭圆中一个焦点与长轴两顶点的距离分别为与,分别结合两圆的半径R和r分析选项即可求解.【详解】设椭圆轨道Ⅱ的长轴长为,短轴长为,焦距为.依题意得,解得,.椭圆轨道Ⅱ上任意两点距离的最大值为,故A错误;椭圆轨道Ⅱ的焦距为,故B正确;椭圆轨道Ⅱ的短轴长,若不变,越大,则越大,故C错误;椭圆轨道Ⅱ的离心率,若不变,越小,则越大,故D正确.故选:BD.【点睛】关键点点睛:根据示意图理解并找出椭圆中与两圆半径的关系,是解决问题的关键.27.(2022·重庆实验外国语学校一模)“,数列”在通信技术有着重要应用,它是指各项的值都等于或的数列.设是一个有限,数列,表示把中每个都变为,,每个都变为,,所得到的新的,数列,例如,则.设是一个有限,数列,定义,、、、.则下列说法正确的是(

)A.若,则B.对任意有限,数列、中和的个数总相等C.中的,数对的个数总与中的,数对的个数相等D.若,则中,数对的个数为【答案】BC【解析】【分析】利用题中定义可判断A选项的正误;利用的定义可判断B选项的正误;根据中的,数对与中的,数对的一一对应关系可判断C选项的正误;记中的,数对与,数对的个数分别为,,根据已知条件得出,结合累加法可判断D选项的正误.【详解】若,则,,A错误;由的定义知,B正确;因为中的每一个,数对只能由中的一个,数对变来,且中的每一个,数对必生成一个中的,数对,C正确;记中的,数对与,数对的个数分别为,,由C选项知.又因为中的每一个,数对只能由中的一个或者一个,数对变来,且由B选项知,中有个,从而,所以,故,D错误,故选:BC.【点睛】与数列的新定义有关的问题的求解策略:(1)通过给出一个新的数列的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;(2)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.28.(2022·山东济南·一模)平面内到两定点距离之积为常数的点的轨迹称为卡西尼卵形线,它是1675年卡西尼在研究土星及其卫星的运行规律时发现的.已知在平面直角坐标系中,,,动点P满足,其轨迹为一条连续的封闭曲线C.则下列结论正确的是(

)A.曲线C与y轴的交点为, B.曲线C关于x轴对称C.面积的最大值为2 D.的取值范围是【答案】ABD【解析】【分析】根据给定条件,求出曲线C的方程,由判断A;由曲线方程对称性判断B;取特值计算判断C;求出的范围计算判断D作答.【详解】设点,依题意,,整理得:,对于A,当时,解得,即曲线C与y轴的交点为,,A正确;对于B,因,由换方程不变,曲线C关于x轴对称,B正确;对于C,当时,,即点在曲线C上,,C不正确;对于D,由得:,解得,于是得,解得,D正确.故选:ABD【点睛】结论点睛:曲线C的方程为,(1)如果,则曲线C关于y轴对称;(2)如果,则曲线C关于x轴对称;(3)如果,则曲线C关于原点对称.29.(2022·重庆·模拟预测)重庆荣昌折扇是中国四大名扇之一,始于1551年明代嘉靖年间,明末已成为贡品人朝,产品以其精湛的工业制作而闻名于海内外.经历代艺人刻苦钻研、精工创制,荣昌折扇逐步发展成为具有独特风格的中国传统工艺品,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长,偏称游人携袖里,不劳侍女执花傍;宫罗旧赐休相妒,还汝团圆共夜凉”图1为荣昌折扇,其平面图为图2的扇形COD,其中,动点P在上(含端点),连接OP交扇形OAB的弧于点Q,且,则下列说法正确的是(

)图1

图2A.若,则 B.若,则C. D.【答案】ABD【解析】【分析】建立平面直角系,表示出相关点的坐标,设,可得,由,结合题中条件可判断A,B;表示出相关向量的坐标,利用数量积的运算律,结合三角函数的性质,可判断C,D.【详解】如图,作,分别以为x,y轴建立平面直角坐标系,则,设,则,由可得,且,若,则,解得,(负值舍去),故,A正确;若,则,,故B正确;,由于,故,故,故C错误;由于,故,而,故,故D正确,故选:ABD30.(2022·广东惠州·一模)近年来,纳米晶的多项技术和方法在水软化领域均有重要应用.纳米晶体结构众多,下图是一种纳米晶的结构示意图,其是由正四面体沿棱的三等分点作平行于底面的截面得到所有棱长均为n的几何体,则下列说法正确的有(

)A.该结构的纳米晶个体的表面积为B.该结构的纳米晶个体的体积为C.该结构的纳米晶个体外接球的表面积为D.二面角A1−A2A3−B3的余弦值为【答案】ABD【解析】【分析】对于A:该几何体是由4个正三角形和4个正六边形构成,代公式计算即可.对于B:棱长为a的正四面体的高为,根据割补法代公式计算.对于C:设外接球球心为O,三角形的中心为,正六边形的中心为,则O在上,计算可得;对于D:二面角是原正四面体侧面和底面成角的补角,计算可得.【详解】对于A:该几何体是由4个正三角形和4个正六边形构成,所以表面积,故A正确;对于B:棱长为a的正四面体的高为,所以,故B正确;对于C:设外接球球心为O,三角形的中心为,正六边形的中心为,则O在上,几何体上下底面距离为,可得,计算整理得,因此该几何体的外接球表面积为,故C错误;对于D:二面角为是原正四面体侧面和底面成角的补角,如图,过正四面体的顶点作平面于点,易知为的中心,延长交于点,则为的中点,连接,设正四面体的棱长为2,则,所以,,因为平面,所以,又,,所以平面,平面,所以,所以即为所求侧面与底面所成二面角的平面角,在中,,所以侧面与底面所成二面角的平面角的余弦值为,所以二面角A1−A2A3−B3的余弦值为,故D正确.故选:ABD.31.(2022·广东广州·一模)十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段,记为第1次操作:再将剩下的两个区间,分别均分为三段,并各自去掉中间的区间段,记为第2次操作:;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段;操作过程不断地进行下去,剩下的区间集合即是“康托三分集”.若第n次操作去掉的区间长度记为,则(

)A. B.C. D.【答案】BC【解析】【分析】分析题意发现是一个等比数列,按照等比数列的性质逐一验证即可,其中B选项是化简成一个等差数列进行判断,CD两个选项需要利用数列的单调性进行判断,尤其是D选项,需要构造新数列,利用做差法验证单调性.【详解】由题可知,;,;,由此可知,即一个等比数列;A:,A错误;B:,因为,所以该数列为递减数列,又因为当时,,所以恒成立,B正确;C:,即,两边约去得到,当时,,原式成立;当时,恒成立,所以成立,即成立,C正确;D:令,再令,令解得,因为,所以取,由此可知时;时,故为最大值,,根据单调性,即不恒成立,D错误.故选:BC32.(2021·辽宁·模拟预测)斐波那契数列又称黄金分割数列,因数学家列昂纳多•斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.斐波那契数列用递推的方式可如下定义:用表示斐波那契数列的第项,则数列满足:,记,则下列结论正确的是(

)A. B. C. D.【答案】ABD【解析】【分析】根据给定条件逐项分析、推理计算即可判断作答.【详解】依题意,的前10项依次为:1,1,2,3,5,8,13,21,34,55,即,A正确;依题意,当时,,得,B正确;由给定的递推公式得:,,…,,累加得,于是有,即,C错误;,,,…,,因此,,D正确.故选:ABD【点睛】思路点睛:涉及给出递推公式探求数列性质的问题,认真分析递推公式并进行变形,可借助累加、累乘求通项的方法分析、探讨项间关系而解决问题.33.(2021·全国·模拟预测)(多选)材料:函数是描述客观世界中变量关系和规律的最为基本的数学语言和工具,初等函数是由常数和基本初等函数经过有限次的有理运算及有限次的复合所产生的,且能用一个解析式表示的函数,如函数(),我们可以作变形:,所以可看作是由函数和复合而成的,即()为初等函数.根据以上材料,对于初等函数()的说法正确的是(

)A.无极小值 B.有极小值1 C.无极大值 D.有极大值【答案】AD【解析】【分析】根据给定信息,对函数变形并求导,进而判断其极值情况即可得解.【详解】依题意,,,求导得:,由,得,当时,,函数在上单调递增,当时,,函数在上单调递减,所以有极大值,无极小值.故选:AD34.(2021·重庆·模拟预测)分形几何学是一门以不规则几何形态为研究对象的几何学,分形几何具有自身相似性,从它的任何一个局部经过放大,都可以得到一个和整体全等的图形.如下图的雪花曲线,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图2,如此继续下去,得图(3)...记为第个图形的边长,记为第个图形的周长,为的前项和,则下列说法正确的是(

)A. B.C.若为中的不同两项,且,则最小值是1 D.若恒成立,则的最小值为【答案】ACD【解析】【分析】对于A,从前后两个图之间的关系可求出,对于B,由题意可知,数列是1为首项,为公比的等比数列,从而可求出,对于C,由结合,可得,而,从而可求出的值,则可求出的值,进而可求得最小值,对于D,由在上递增和在上递增,可求得结果.【详解】解:对于A,由题意可知,下一个图形的边长是上一个图边长的,边数是上一个图形的4倍,则周长之间的关系为,所以数列是公比为,首项为3的等比数列,所以,所以A正确,对于B,由题意可知,从第2个图形起,每一个图形的边长均为上一个图形边长的,所以数列是1为首项,为公比的等比数列,所以,所以B错误,对于C,由,,得,所以,所以,因为,所以当时,,则,当时,,则,当时,,则,当时,,则,当时,,则,所以最小值是1,所以C正确,对于D,因为在上递增,所以,即,令,则在上递增,所以,即,即,因为恒成立,所以的最小值为,所以D正确,故选:ACD【点睛】关键点点睛:此题考查等比数列的通项公式和求和公式的应用,考查数列单调性的应用,解题的关键是正确理解题意,求出数列和的通项公式,考查计算能力,属于较难题35.(2021·重庆·模拟预测)筒车是我国古代发明的一种灌溉工具,因其经济又环保,至今还在农业生产中得到使用(图1),明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(图2).现有一个半径为3米的筒车按逆时针方向每分钟旋转1圈,简车的轴心距离水面的高度为2米,设简车上的某个盛水筒P到水面的距离为(单位:米)(在水面下则为负数),若以盛水筒P刚浮出水面为初始时刻,经过1秒后,下列命题正确的是(

)(参考数据:)A.,其中,且B.,其中,且C.当时,盛水筒再次进入水中D.当时,盛水筒到达最高点【答案】BD【解析】【分析】若为筒车的轴心的位置,为水面,为筒车经过秒后的位置,由题设知筒车的角速度,令易得,而、,即可求的解析式判断A、B的正误,、代入函数解析式求,即可判断C、D的正误.【详解】由题意知,如上图,若为筒车的轴心的位置,为水面,为筒车经过秒后的位置,筒车的角速度,令且,∴,故,而,∴,故A错误,B正确;当时,,且,,∴,故盛水筒没有进入水中,C错误;当时,,且,即,∴,故盛水筒到达最高点,D正确.故选:BD【点睛】关键点点睛:画出筒车与水面的简单平面示意图,利用及盛水筒P到水面的距离与相关线段的等量关系,写出函数解析式.36.(2021·辽宁实验中学二模)十七世纪至十八世纪的德国数学家莱布尼兹是世界上第一个提出二进制记数法的人,用二进制记数只需数字0和1,对于整数可理解为逢二进,例如:自然数1在二进制中就表示为1,2表示为10,3表示为11,7表示为111,即,,其中,或,记为上述表示中0的个数,如,.则下列说法中正确的是(

).A.B.C.D.1到127这些自然数的二进制表示中的自然数有35个【答案】ABD【解析】【分析】根据二进制计数法逐个分析选项即可.【详解】对于选项A:∵,∴12表示为1100,∴,∵,∴18表示为10010,∴,∴,故选项A正确,对于选项B:∵,∴转化为二进制后末尾必为0,又∵,∴转化为二进制后末尾必为1,∴,故选项B正确,对于选项C:当时,,,∵,,∴,故选项C错误,对于选项D:当时,有1个,当时,有个,当时,有个,当时,有个,当时,有个,则一共有个,故选项D正确,故选:ABD.37.(2021·福建省福州第一中学模拟预测)斐波那契螺旋线,也称“黄金螺旋”,是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形,然后在正方形里面画一个90度的扇形,连起来的弧线就是斐波那契螺旋线.它来源于斐波那契数列,又称为黄金分割数列.现将斐波那契数列记为,,,边长为斐波那契数的正方形所对应扇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论