版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《材料物理化学》讲座第一讲:新能源技术与材料New
Energy
technology
and
materials陈
( :
cc
)Department
of
Materials
Science
and
EngineeringUniversity
of
Science
and
Technology
of
China引言Why
new
energy
technology?我国能源持续供应能力石油资源原油储量分布中东
66.4%南美7.8%7.5%非洲6.6%东欧
5.8%西欧1.8%亚洲3.9%中国储量可采储量澳大利亚0.2%940亿吨52.6亿吨(占世界第12位)占世界储量的2.43%生产与需求2001年石油产量1.65亿吨2003年石油产量进口量2005年石油产量进口量进口量 0.7亿吨(原油)0.3亿吨(成品油)1.69亿吨(原油)0.1442亿吨(成品油)0.8299亿吨(原油)1.82亿吨(原油)1.3亿吨(原油)(
消费量为4366万吨)2007年进口量2008年进口量1.63亿吨(原油)0.338亿吨(成品油)1.79亿吨(原油)现在,我国石油对外依存度为50%.2011年:55%;2020:预计65-70%52.6
(1.79
2)
14.7(年)煤炭资源世界上最大可能储量10.6万亿吨世界探明可采储量9842亿吨大约可供开采150―200年中国保有储量10070.7亿吨(国家
1998)1650亿吨(世界第三位),为世界人均储量的45%中国可采储量2001年中国原煤产量
11.1亿吨标准煤2003年中国原煤产量
19亿吨标准煤2005年中国原煤产量
21.9亿吨标准煤Syngas
(H2
+
CO)C
+
H2O
→
CO
+
H2C
+
O2
→CO2CO2
+
C
→2COCH4
+
H2O
→
CO
+
3H2CO
+
H2O
→
CO2
+
H2(water
gas
shift
reaction
)As
a
fuel,
most
often
produced
bygasification
of
coal,
biomass
ormunicipal
waste.As
an
intermediate
in
industrialsynthesis
of
hydrogen
(e.g.
NH3production),
produced
fromnatural
gas
(
reformingreaction)EnergysourcesGas
separationMembranesCatalysisCO2-removalH2-technologyFuel
cellsSustainableEfficientEnvironmentaland
climatefriendlyHydropowerSun,
wind,
waveGasGas/liquidfuelImprovedefficiencyReducedemissionsCO2
and
NOxStorageHydrogenSOFC
PEMSolar
cellsPhotolysisElectrolysisNew
energy
technologyUSEElectromotors;
HeatElectricityBatteries
CapacitorsElectricity
storage
andusePart
1:
电化学基础Electrochemistry
basicsThe
amount
of
electricity
that
flows
through
the
celldepends
on
the
amount
of
species
being
oxidized
or
reducedaccording
to
the
Faraday
law:Am
it
MnFI
=
dQ/dt Q
=
∫IdtElectricity:n-
number
of
electrons
in
a
redox
reaction,
N-number
of
moles,MA-
molecular
weight,
F-
Faraday
constant
(96485C/mole)In
an
electrochemical
reaction:
aA
+
bB
==
gG
+
hHG0
=
-nFE0
G
=-nFE E=E0
–
(RT/nF)lnQrS
=
nF(E/T)P
rH
=
-nFE
+nFT(E/T)PΔGocell
=
-nFEocellEocell=
Eocathode
–
Eo
eanodIf
Eocell>
0,
thentheprocess
is
spontaneous(galvanic
cell)If
Eocell<
0,
then
theprocess
isnonspontaneous(electrolytic
cell)Part
2:
氢能与膜分离技术Natural
gas
as
energy
sourceExchange
of
coalan l
by
more
environmentalfriendly
natural
gasNatural
gas
for
use
in
fuel
cellsNatural
gas
as
source
for
hydrogen
(or
hydrogencarriers)Impact
of
membrane
technology
on
GTLOxygenPlantReformerFisher-TropschReactorSeparation
/UpgradingSyngas
ReactorFisher-TropschReactorSeparation
/UpgradingConventional
ProcessLiquid
Products15
%Air30%Ceramic
Membrane
ProcessAirNat.
Gas
/Liquid
ProductsNat.
Gas
/30
%
25
%CAPITAL
INVESTMENTEthyleneOlefinsSynthesisMTOPropyleneBy-productsNatural
GasMethanolSynthesisSynthesisGasProductionSyn.Gasto
MeOHGas
To
Olefins
(GTO)Catalysts
for
gas
conversionThe
UOP/Hydro
Methanol
To
Olefins
ProcessCatalysts
for
gas
conversionThe
gas
to
syngas
ProcessMTO
ReactionsCatalystD
oCButenesThe
unique
pore
sizeallows
selectiveconversion
to
olefinsand
excludes
heaviercompoundsMethanolCH3OHEthyleneC2H4PropyleneC3H6Catalysts
for
gas
conversionThe
Propane
DeHydrogenation
processHydrotalciteHeat(Mg,Al)O
supportPropane
C3H8Propylene
C3H6
+
H2Mg6Al2CO3(OH)16·4(H2O)+
catalystimpregnationPt,
Sn水滑石Oxides
for
energy
technologyOxygen
permeable
membranes
(ceramic
membranes)dense
materials;
oxygen
transport
by
atomic
diffusioninfinite
O2
selectivity;
operation
at
high
temperaturesMixed
conductors;
electron
and
oxygen
ion
transportchemical
stability;
thermal
and
chemical
expansionPurification
of
air
for
use
in
oxidation
processesultra
clean
syngas
production
(NOx
reduction)GTL;
lowering
of
greenhouse
gas
emissions;
CH4,
CO2Related
materials
used
in
SOFC;
of
interest
as
high
Tc,
CMR,
etcMaterials
for
oxygen
permeable
membranesH2OAir
+
CH4N2
xH2
+
COO2-2e-MembraneO2氧气分离方法氧气分离方法低温分馏:能耗高,设备体积大,
投资大,集中生产会带来
问题;变压吸附:无法实现连续生产,生产效率低,O2选择性低,得到的氧气纯度不高;氧分离膜:理论氧分离效率为100%,能耗低,过程简单,成本低,且能方便的与耗氧工艺耦合,可以降低氧气的生产成本30%。低温分馏工作原理&氧渗透理论“离子-电子混合导体”Def:氧离子迁移数t
i偏离于1,即体系同时存在氧离子电导及电子电导图1
混合导体透氧膜的氧渗透原理图图2
混合导体透氧膜氧渗透过程的等效电路图氧渗透过程从宏观上看就是氧气从高氧分压端经体相扩散渗透到了低氧分压端,工作中的混合导体透氧膜可看作是一个
短路的氧的浓差电池。工作原理&氧渗透理论R
s’和Rs”:高、低氧分压端表面交换电阻,Rbi和Rb
:氧离子和电子(空穴)体相迁移电阻,elE
和
I
: 电池的理论电动势和电流。浓差电池的理论电动势为:氧离子和电子空穴定向迁移引起的内电流与氧渗透流量FO2的关系为:→Rs>>Rb,表面交换控制过程;
Rs<<Rb,体相扩散控制过程;
Rs≈Rb,共同控制过程。工作原理&氧渗透理论(Nernst
Equation)没有外电场存在时的氧渗透率为:工作原理&氧渗透理论双极电导率σamb(ambipolar
conductivity)根据氧化学势的定义:沿膜厚L
积分得:σi,σel不受氧分压影响(Wagner
公式)σi<<σel(JO2∝σi)分类混合导体图3
氧离子缺陷传导机制示意图单相 双相Def:氧离子和电子在同一相中
Def:氧离子和电子有不同且相传导 互独立的
通道相结构组成氧空位间隙氧氧离子缺陷物种图4
不同相结构组成的混合导体混合导体透氧膜的种类及研究概况单相混合导体钙钛矿型结构(ABO3)特点:A位和B位具有很强的掺杂能力☆低价离子在A位掺杂能形成大量氧空位,具有良好的氧离子导电性;☆在B位掺杂的过渡金属离子又具有较强的变价能力。这类材料通过Zener双交换机制传导电子电能良流及氧空位传导氧离子,从而形好的离子—电子混合导体。Ln1-xAxCo1-yByO3-δ(Ln=
La,Gd,Sm,Nd,Pr,A=
Na,Ca,Ba,Sr,B=
n,Fe,Co,Ni,Cu)、Y0.05BaCo0.95O3-δ、La1-xMxCrO3-δ(M=Ca,Sr,Mg)、Y0.1Ba0.9CoO3-δ、CaTi1-xMxO3-δ(M=Fe,Co,Ni)、Ba0.5Sr0.5Co0.8Fe0.2O3-δ。0.8
0.2
3-δ
0.5
0.5
0.8
0.2
3-δ其中SrCo
FeO
和Ba
Sr
Co
Fe
O
在850℃以上的air/He梯度下透氧量达到10-6mol/cm2⋅s类钙钛矿型结构(AO(ABO3)n)Ruddlesden-Poppern=1,代表物质:La2NiO4晶体结构:层状,c轴方向是由LaO和LaNiO3钙钛矿交替而成对其进行掺杂可提高透氧能力。Sr
Fe
O
,SrCoFe O
,Bi
Sr
CaCuO
,YBa
Cu
O4 6
13 0.5
y
2
2
8
2 3
6+δLa
Ni Fe
O和La
Cu2 1-x
x
4+δ2 1-x
x
4+δCo
O
在850℃的透氧速率10−7mol/cm2⋅s双相混合导体结构特点:两个组成相之间化学兼容性要好,且热膨胀系数和烧结温度都必须相近。☆氧离子导电相:稳定的ZrO2,掺杂的CeO2等☆电子导电相: 金属,高电导率的氧化物La0.6Sr0.4MnO3-δ
La0.8Sr0.2Cr0.5Fe0.5O3-δ
La0.8Sr0.2Cr0.5Mn0.5O3-δLa0.8Sr0.2CrO3-δ
、La0.8Ca0.2CrO3-δ-YSZ、SDC
Au、Ag、Pd、Pt双相混合导体相对单相透氧量相差一个数量级钙钛矿型结构(ABO3)3
n类钙钛矿型结构(AO(ABO))试验装置图airO2
depleted
air状膜b)管状膜图6
氧渗透性能测试装置基于透氧膜的膜反应器用于
气CH4Pure
O2致密陶瓷透氧膜Mainly
CO,H2Little
CH4
,CO2,H2OAirO2
depletedair主要反应:2CH4+O2=2CO+4H2稳定性考虑,选择双相混合导体材料;透氧量考虑,选择中空纤维膜。近期工作:LSCF-YSZ(SDC)中空纤维膜进行POM燃烧-重整串联膜反应器构造示意图两段式(燃烧-重整)Ni/-Al2O3催化剂
→→SrFeCo0.5O3.25XCH4FO2OCM透氧膜反应器中OCM反应机理示意图OCM试验结果材料体系C2选择性产率La0.6Sr0.4Co0.8Fe0.2O3-δ70%<5%(LSCFO)La-Ba-Co-Fe-O
(LBCFO)>50%—Ba0.5Sr0.5Co0.8Fe0.2O3-δ(
BSCFO)>50%~10%BaCe0.8Gd0.2O3-δ62.5%16%相对于固定床反应C2选择性的20%,上述实验结果均比常规反应器中反应的结果要高,表明利用MIEC透氧膜反应器进行OCM反应确能提高C2的选择性。过去300空气中的CO2浓度变化图过去140年平均气温变化图温室气体减排温室气体CO2在大气中含量的增加,已经导致了全球平均温度在过去几十年里一直呈现增加的趋势,控制大气中CO2的含量已经成为国际社会的共识。唯一的办法就是进行CO2的捕获。三种捕获方法:燃烧前除碳、纯氧燃烧、燃烧尾气中CO2捕获。现有O2/CO2燃烧技术流程示意图CO2
捕获燃烧气体净化低温分离空气O2
O2
/
CO2CO2循环现有O2
/CO2燃烧技术流程图需额外消耗30%的能量用于分离氧气和压缩CO2空气分离能耗大、投资高、增加电厂占地面积基于透氧膜的新型O2/CO2燃烧技术CO2
捕获燃烧气体净化O2
/
CO2CO2循环基于陶瓷透氧膜的新型O2/CO2燃烧技术流程图空气分离成本低、能量损失小、投资小新型O2/CO2燃烧技术特点优点可实现CO2零排放NOx排放量低,<<1ppm能量损失小(相对于O2/CO2燃烧技术)存在的难题合适的透氧膜材料膜材料加工工艺高温热交换设备O2/CO2燃烧技术透氧膜材料要求:耐CO2侵蚀,相当的透氧量。SrCo0.8Fe0.2O3-δ
(SCF)体系中B位掺杂Ti,Zn,Zr。试验结果表明材料耐CO2性能和透氧性能都很好。基于透氧膜的新型O2/CO2燃烧技术Sr(Co0.8Fe0.2)1-xTix
O3-δ
(0≤x≤0.4)在CO2气氛下的重量和透氧量变化曲线基于透氧膜的零排放电池技术前置重整器LSCF-YSZ后置燃烧器LCC-SDCUSTC:
two-stage
oxygen-permeablemembrane
reactora)
The
chemical
conversionsin
different
areas
of
themembrane
reactorb)
the
construction
anddimensions
of
the
reactor.Angew.
Chem.
Int.
Ed.
2003,
42,
5196
–5198Ceramic
membrane
reactorsO2-permeable
hollow
fibres
and
capillaries
with
an
oxygen-flux
0.5
m3/m2
h
barHigh-temperature
module
up
to
900°C
housing
oxygen-permeable
membranesof
0.1
m2
areaFull-ceramic
module
with
1
m2
microporous
and
catalytically
active
membraneareaTechnologies
for
the
catalytic
coating
of
membranes/modulesPart
3:能与能电池第一代能电池第二代能电池第三代能电池单晶硅25.9%,20.3%多晶硅20.4%,15.5%非晶硅11.7%,10.4%CdTe
16.7%,10.9%CIS
19.9%,13.5%敏化电池10.4%有机薄膜电池5.15%纳米结构电池太阳能电池Schematic
of
a
Photovoltaic
(solar)
cellSchematic
representation
of
the
principal
of
thenanocrystalline
injection
cell
(dye
sensitized
heterojunction
solarcell)Dye-sensitized
solar
cellRef.Home
page
in
renewableresearch
center
in
ColoradoPhotoelectrochemical
CellPhotoelectrochemical
CellS+hνS*S*
S++e-CB(TiO2)S++A-A+e-(CE)S+AA-Voc=1/q【(Ef)TiO2
-(E(R/R-))】Dye-sensitized
solar
cellTiO2DyeRef.
M.Gratzel.
Acc.Chem.Res.
2000敏化剂分类联吡啶金属络合物系列酞菁(Phthalocyanine)系列卟啉(Porphyrin)系列纯有机系列NNNNHOOCCOOHCOOHCOOHRuSCNNCSN3NNNRuHOOCCOOHCOOHNCSNCSSCNBlack
dyeRef:
Nazeeruddin
M.K.,
etal.,
J.
Am.
Chem.
Soc.,
1993,115,6382Nazeeruddin
M.K.,
et
al.,Chem.
Commun.,
1997,1705-1706联吡啶金属络合物系列Wavelength
[nm]Ref:
Hagfeldt
A.
and
Grätzel
M.,
Acc.
Chem.
Res.,2000,33,269-277Black
dyeRef:
N
azeeruddinM
K,
GratzelM
J.Am.Chem.Soc.1993,
115:
6382Hagfeldt
A.
and
Grätzel
M.,
Acc.
Chem.
Res.,2000,33,269N3
和Black
Dye性能比较NNNNNNNNRRRRMNNNNMRRRR卟啉系列和酞菁系列Ref:
(1)A.Kay,
M.Gratzel,
et
al.,J.Phys.Chem.1993,97,6272(2)
M.M.
Ressler
and
R.K.
Panday,Chemtech,1998,3.39Ref:Sayama
K.,etal.,
Chem.
Commun.,
2000,
1173NSCHCHNSOSC18H37COOHMerocyanine
derivative,
Mb(18)-N
with
an
overall
η
=4.2%纯有机系列(一)半菁衍生物Ref:
Hara
K.,
et
al.,
New
J.
Chem.
2003,27,783OCNCOOHNOONOSSHOOCCNNKX-2311NKX-2677纯有机
系列(二)香豆素衍生物Dye-sensitized
solar
cellRef.
Homepage
in
Gratzelgroup电解质材料液态电解质存在的缺点:易导致敏化
的脱附;溶剂易挥发,与敏化作用导致降解;密封工艺复杂;载流子迁移速率很慢,在高强度光照时不稳定;存在其他氧化还原反应……Ref:Tennakone
K,
Perera
V
P
S
,
et
al
.
J
.
Phys.
D:Appl
.
Phys.
,1999
,32
,374.固态空穴传输材料Grätzel
等人在1998年用2,2’,7,7’-四(N,N-二对甲氧基苯基氨基)-9,9’-螺环二芴(OMeTAD,如下图所示)作为空穴传输材料,得到了单色效率高达33%的电池。Bach
U
,LupoD
,Comte
P
,
et
al
.
Nat
ure
,1998
,395
:583Photoelectrochemical
Cellmetale
-h+Light
is
Converted
to
Electrical+Chemical
EnergyLiquidSolidSrTiO3KTaO3TiO2SnO2Fe2O3Solar
semi-conductor
device.
(Ga,
In,
and
P,
elements).传统能电池分类各类能电池效率Prog.
Photovolt:
Res.
Appl.
2006;
14:45–51含镓的铜铟电池19.5±0.6国家可再生能源0.410cm2面积碲化镉电池16.5±0.5国家可再生能源1.032
cm2面积多晶硅薄膜电池16.6±0.4德国斯图加特大学4.017cm2面积纳米硅
电池10.1±0.2公司2微米厚膜二氧化钛纳米电池11.0±0.5EPFL0.25
cm2面积0.27cm2面积USSC公司14.5(初始)±0.712.8(稳定)±0.7非晶硅电池4cm2面积能源公司30.28±1.21.002cm2面积德国20.3±0.5333倍聚光Spectrolab34.7±1.7GaAs多结电池多晶硅 电池InGaP/GaAs96倍聚光SunPower公司26.8±0.8背接触聚光单晶硅电池4cm2面积澳大利亚新南威尔士大学24.7±0.5单晶硅电池备注研制单位转换效率(%)电池种类世界各种
能电池水平各种电池效率的最高水平(STC:AM1.5,1000W/m2,25℃)Si-based
solar
cellsEfficiencyCostsFeedstock
-
availabiltyPurity
requirements
SoG-Si(SoG-Si:
6N
vs.
SEG-Si:
11N)Si-productionELKEMSolar
siliconrsScanSolar
cellsr
ScanCellSolar
cellpanelsSolEnergyResearch
&
educationProduction
of
SoG-Si
solar
grade
siliconQu)artz(SiO2)Carbonprocess
processSoG-Si0.0316025Feedstock
limitationsfrom
EG
scrapNewSoG-SiprocessCurrent
processMetallurgical
Grade
SiliconMG-SiPrimaryPrices
in
US$/kg
SiEG-SiSilicon
forelectronicsQuartz(SiO2)CarbonPrimaryprocessMG-SiSoG-SiDirect
route
to
Solar
Grade
SiSiliconm.p.=1414ºC
b.p.=3265ºCSilicon
Preparation两种多晶硅的
工艺改良西门子法和硅烷法1955年西门子公司研究成功了用H2还原SiHCl3,在硅芯发热体上沉积硅的工艺技术,并于1957年建厂进行工业规模生产。,这就是通常所说的西门子法。随后,西门子工艺的改进主要集中在减少单位多晶硅产品的原料、辅料、电能消耗以及降低成本等方面,于是出现了改良西门子法。该方法所生产的多晶硅占世界生产总量的70~80%。1956年英国国际标准电气公司的标准电讯实验所研究成功了SiH4热分解 多晶硅的方法,被称为硅烷法。1959年的石冢
也同样成功研究出该方法。 联合碳化物公司研究歧化法
SiH4,1980年 最终报告,综合上述工艺并加以改进,诞生了新硅烷法多晶硅生产工艺技术。Silicon
PreparationSynthesis
of
Metallurgical
grade
silicon
(MGS)300oCIn
fluid-bed
reactorSi
+
3HCl
SiHCl3(b.p.
31.8oC)SiO2
+
2C2000oCSi
+
2COMG-Si(metallurgicalgrade
silicon)(>
98%)SiO2
+
C
SiO
+
COSiO
+2C
SiC
+
COSidereactionsSiO2
+
2SiC
3Si
+
2COWith
high[SiO2]+
H2fordistillationFrom
MGS
to
EGS
(electronic
grade
silicon)SiHCl3
+
H21000ºC
Si
+ 3
HClEGS
(>99.9%)processFrom
MGS
to
EGS
(electronic
grade
silicon)改良西门子法流程①SiHCl3的②SiHCl3的精馏提纯③SiHCl3的氢还原④还原尾气回收⑤SiCl4氢化State-of-the-art
of
IC
industryk0≈1
for
B,
P,AsCrystal
growth
Czochralski
processThe
raw
Si
used
for
crystalgrowth
ispurified
from
SiO2
(sand)
throughrefining,
fractional
distillationand
CVD.The
raw
material
contains
<
1
ppbimpurities
except
for
O
(
1018
cm-3)andC
(
1016
cm-3)Essentially
all
Si rs
used
for
ICstoday
come
from
Czochralski
growncrystals.Polysilicon
material
is
melted,
held
atclose
to
1415C,
and
a
single
crystal
seed
isused
to
start
the
crystal
growth.Pull
rate,
melt
temperature
and
rotationrate
are
all
important
control
parameters.The
surface
tension
between
the
seed
and
the
molten
silicon
causes
a
smallamount
of
the
liquid
to
rise
with
the
seed
and
cool
into
a
single
crystalline
ingotwiththe
same
orientation
asthe
seed.The
ingot
diameter
is
determined
by
a
combination
of
temperature
and
extractionspeedCrystal
growth
Czochralski
processExamples
of
completed
ingotsCrystal
growth
Float-zone
processternative
growth
process
is
the
float
zone
process
which
canbeused
for
either
refining
or
single
crystal
growth.In
the
float
zone
process,
dopants
and
other
impurities
tend
to
stayin
the
liquid
and
therefore
refining
can
be plished,
especiallywith
multiple
passes.Crystal
growth
Impurity
segregationEquilibrium
segregation
coefficient:ko=
Cs/ClCs:
the
equilibrium
concentration
of
the
impurity
in
the
solidCl:
the
equilibrium
concentration
of
the
impurity
in
the
meltko
<
1,
implying
that
the
impurities
preferentially
segregateto
the
melt
and
the
melt es
progressively
enrichedwiththese
impurities
as
the
crystal
is
being
pulled.Thin-fiolar
cellCu-In-Ga-Se
(CIGS)CIGS
has
the
highest
demonstrated
efficiency
of
allthin-fi at
19.5%CIGS
can
bedeposited
on
flexible
substratesenabling
lightweight
flexible
modulesNo
inherent
material
limitations
or
hazardouschemicalsRoll-To-Roll
PV
Cell
&
Module
process
FlowRoll
Coater
Manufacturing
SystemFinished
Product16.5%
Efficient
CdTeSolar
CellsPolycrystallineThin
Film
Tandem
Solar
Cell15%
efficient
4-terminal
device
willbe
met1600
PV
cells
in
Sacramento,
CA.
(2
MW
electricity).Part
4:电池Fuel
Cell
DiagramCathodeAnodeO2
inO2/H2O
outH2
inchannelsfor
H2
flowchannelsfor
O2
flowH2/H2O
outH+
or
O2-
conductor(electrolyte)H2
and
O2
never
come
into
contact,
only
H+
and
O2-!!TypeAcronymElectrolyteProton
exchange
membranePEMFCPEMPhosphoric
acidPAFCH3PO4AlkalineAFCKOHMolten
carbonateMCFCCarbonate
SaltsSolid
oxideSOFCYSZTypes
of
fuel
cell:
based
on
kinds
of
electrolyteTypes
of
Fuel
CellsWastefromanodeWastefromcathodeFuel
toanodeOxidizer
(air)toanodeAnode
ElectrolytematerialElectrochemicalreactionin
differenttypesof
FCCathodeMain
advantages
andapplication
of
fuelcellRange
ofapplication
of
thedifferent
types
offuel
cellHigher
efficiencyLess
pollutionQuietPotential
for
zeroemissions,
HigherefficiencyHigher
energydensity
than
batteriesFaster
rechargingMain
advantagePower
inWattsDistributed
powergeneration,
CHP,
alsobusesCars,
boats
anddomesticCHP(Combined
heat
&power)Potable
electronicsequipment( ,
NB,Communication)Typicalapplication1
10
100
1k
10k
100k
1M
10MAFCMCFCSOFCPEMFCPAFCTypes
of
Fuel
CellsProton
Exchange
Membrane
fuel
cells
(PEM):
aka
polymer
eletrodefuel
cells. Use
thin
solid
membrane
as
electrode. High
powerdensity
and
low
weight
compared
to
other
fuel
cells. Can
operateat
relatively
low
temperatures.Alkaline
fuel
cells
(AFCs):
Currently
used
by
space
shuttle
fleet.Use
of
KOH
as
an
electrolyte. Very
efficient
in
space
applicationshowever
susceptible
to
carbon
contamination.Phosphoric-acid
fuel
cells
(PAFCs):
Use
liquid
phosphoric
acid
asthe
electrolyte. Very
efficient
up
to
80%,
but
rather
large
andheavy
and
used
mainly
for
stationary
appilications.Solid
Oxide
(SOFCs):
Use
of
hard
non-pourous
ceramic
compoundas
the
electrode. Very
high
operating
temp
of
around
1800
Ftherefore
require
long
heating
time
but
are
very
efficient.Molten
carbonate
fuel
cell
(MCFC):
Molten
carbonate
fuel
cells
usean
electrolyte
composed
of
a
molten
carbonate
salt
mixturesuspended
in
a
porous,
chemically
inert
cerami
hiumaluminum
oxide
(LiAlO2)
matrix.
These
systems
are
large
andoperate
at
very
high
temperatures
(in
the
range
of
1,200ºF).Durability
is
limited
by
corrosive
electrolyteTypes
of
fuel
cellsCso
be
designated
by
which
fuel
is
used.Hydrogen2
H2
(g)
+
O2
(g)
2
H2O
(g)MethanolCH3OH
(g)
+
O2
(g)
CO2
(g)
+
H2O
(g)PropaneC3H8
(g)
+
5
O2
(g)
3
CO2
(g)
+
4
H2O
(g)Advantages
of
fuel
cellsFuel
(H2
or
hydrocarbons)
is
light
and
can
betransported/refilled.H2
fuel
cells
are
very
efficient
(80%).Fuel
cells
can
be
made
very
tiny.layer
thicknesses
of
m
or
nm
instead
of
mm.can
be
stacked
to
provide
higher
voltage
potential
(V)Power
can
be
increased
by
increasing
fuelflowP
=
IV
so
I
and
V
means
P.Solid
Oxide
Fuel
CellsOxygenOxygenIonsHydrogen
WaterElectron
flowElectrolyteCathode4e-
+
O2
2O2-AnodeH2+O2-H2O+2e-关键材料固体电解质电极材料连接材料材料特性(1)高离子电导(1)高的电子电导率和一定的离子电导率(2)稳定性(3)相容性
(4)催化活性
(5)多孔性(6)足够的机械强度(1)
高纯的率稳定性相容性电子电导率稳定性相容性(4)高的致密度(5)足够的机械强度材料体系(1)YSZ材料
(2)DCO材料掺杂的LaGaO3材料Bi2O3基材料固体质子导体材料镍基、掺杂的氧化铈基阳极和钙钛矿型氧化物阳极La1-xSrxMnO3(LSM)LSM-YSZLa1-xSrxCoO3(LSC)La1-xSrxCo1-yFeyO3d(LSCF)Sm0.5Sr0.5Co3
(SSC)La1-xCaxCrO3(LCC)
、La1-xSrxCrO3(LSC)和Cr-Ni合金等ZrO2基电解质(YSZ)ZrO2
相图加入Y2O3形成稳定立方化ZrO2稳定性,在高温具有足够的离子电导率和可忽略的电子电导,以及高的机械强度σT=800℃=0.03
S
cm‐1Crystal
structures
of
zirconia
(ZrO2)CubicRT1170ºC2370ºCUndopedZrO2:Pure
undoped:
not
interesting
as
a
ceramicCooling
after
sintering:
T
M;Volume
expansion
FractureStabilize
high
temperature
C-phase
to
RT:17
mol%
YO1.5:
stabilizedZrO2;
Ionic
conductorStabilizing
T-phase
to
RT
is
interesting
(TZP)Metastable
T-phase:
high
strength/toughnessMonoclinic
Tetragonal(La,Sr)MnO3(LSM)阴极0.00000.00050.00150.00206.05.25.04.24.0x=0x=0.1x=0.2x=0.3x=0.4x=0.7x=0.5log[T
(S
cm-1K)]0.0010T-1/K-11-x
xLa Sr
MnO3+O2P =1
barLSM表面交换系数和氧扩散系数Ni-YSZ复合阳极1010-210-1100104103102101Conductivity
(S
cm-1)Toyo
SodapowderZircar
powder6020
30
40
50Ni
content
(vol%)热膨胀系数、孔隙率、TPB的扩散程度(电化学性能)、长期性能PVI曲线(湿H2+O2)Journal
of
SolidState
Electrochemistry
13(12):
1905‐1911Nature,
414(2001)
345‐352电解质薄膜化高性能阴极难点一:SOFC低温化OxygenOxygenIonsElectron
flowElectrolyteCathode4e‐
+
O2
2O2‐Bio‐Gas(CO
+
H2
+
CH4)
+
O2‐CO2
+
H2O
+
e‐AnodeBio‐gasH2O
+
CO2难点二:生物质难点三:大功率电池堆Hydrogen-Oxygen
Fuel
Cell
with
Alkali
or
PhosphoricAcid
ElectrolyteH2O2LoadanodecathodeH2
+
2OH-
=2H2O
+
2e-H2O2LoadanodecathodeH2
=
2H+
+
2e-OH-OH-OH-
OH-H+H+H+H+
+
OH-
=H2OH+H+
+
OH-
=
H2O22H+
+
2e-
+
1/2O
=H2O2
2H
O
+
2e-
+
1/2O
=2OH-AFC
PAFCMolten
CarbonateFuel
CellsOperation
Temperature:
650
degrees
CElectrolyte:
Salt
CarbonatesFuel:
Syngas
or
Hydrogen,
andAdditional: CO2
due
to
CO3
ion
usageCatalyst:
NickelPower
output:
~2MW
units
availableMolten
CarbonateFuel
CellsA
Proton
Exchange
Membrane
(PEM)
fuel
cellPEM
Fuel
CellsOperation
Temperature:
100
degrees
CElectrolyte:
PolymerFuel:
HydrogenCatalyst:
PlatinumPower
output:
50-250
kW
units
availablePEM
Fuel
CellsThe
Homo-heterogeneous
Nature
in
PEM
ElectrolytePorous
NafionH2H2OCF2OCF2CF2SO
-H+3CF2SO
-H+3OCF2CF23SO
-H+SO
H+3-CF2CF2OSO3-H+CF2CF2OAnodePorousACCathodePorousACH+H+PtO2Oad2H
Oe-HHOHHOHHOHHOOH
HH
HOH
HOH
HPtOHHe-HadH+
O(CF2CF2)(CF2CF)x
(Nafion)OHHHOHOH
HPt
clusters
on
cloth
of
porous
conducting
carbon,Loading
of
Pt:
~
30
g
m-2(Nafion)Solid
polymer
based
on
perfluoronsulphonic
acidMembrane
electrode
assembly
(MEA)EcoFC
available
in
1
to
6-cell
versions,
generates
3.5
to
19
watts
at
0.6
to
3.6
V.
Although
the
output
voltageincrements
are
the
same
as
LightFC
more
power
is
available
because
the
membrane
electrode
assembly
in
thefuel
cell
has
a
larger
active
area(roughly
14.5
square
centimetres)ECOFC-5
is
a
five
cell
stack
providing
16W
at
3V
off
hydrogen
and
oxygen.639.00EUR
Retail
Price:Commercial
MEA
for
PEMFCDirect
Methanol
Fuel
Cell
(DMFC)Probably
the widely
commercialized
typeCH3OH
+
H2O質子交換膜3/2
O2—
+CO21.18
Ve-e-3H2OHigh
TemperatureSolid
State
Proton
ConductorsApplicationsFuel
cellsDehydrogenation
pumpselectrolyzersSensors
(H2O,
H2)Mixed
Proton
Electron
Conductorsas
hydrogen
separation
membranesNatural
gas
to
syngasHydrogen
extractionFuel
Cells
for
Mobile
PlatformsPhoto
showing
conceptual
Motorola/LANL
fuel-Superior
to
batteries
at
100
Watt-hr
(Metal
hydride)Fuel
cell
technology
improves
at
approx.
10watt-hr/yrParity
withlaptop
batteries
in
5
Yearss
(2-5
Watt-hr)
soon
to
follow
(anotherMotorola/LANL
collaborationDirect
MethanolBattery-FC
hybrid
(FC
at
1
Watt
chargSame
form
factorPower
phones
for
over
amonth?Replacable
cartridge
to
feed
fuel,
collect
water...Stationary
vs.
portable
systems-
important
issues
and
technical
requirementsPortableEnergy
density
of
fuelCompactness
and
weightDynamic
operation/transients/response
timeBuffer
or
batteryNo
run-away
reactionsFleet
vs
“private”Hydrogen
fuel
used
in
PEM
(proton-exchange
membrane)
cellsfor
vehicles.a)
Toyota
Prius
hybrid,
b)
Engine
of
PriusHydrogen
as
energy
carrierH2
+
1/2O2
H2OChemical
energy
heat
electrical
energyProductionProductionStorageUseGas;
reformingSynthesis
gasPyrolysisElectrolysisPhotolysisPressurized
gasLiquidSolid
absorbersFuel
cellsCombustionHydrogen
societyMaterial
challengesCatalystsAlloys
for
reactorsMetal
hydridesCarbonMicroporousmaterialsFuel
cellsMembranesCatalystsHydrogen
storage
materialsMetal
hydride
forming
elements”Rule
of
2
Å”
for
H-H
separationHigh
H-mass
densityHigh
H-volume
densityAppropriate
p,T
stabilityReversible
absorption/desorptionmetal
hydridescarbon
based
materialsmicorporous
materials‘‘The
2Å
r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论