




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,共60分)1.若,是第二象限的角,则的值等于()A. B.7C. D.-72.命题“”的否定是()A. B.C. D.3.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形的面积是()A.3 B.6C.18 D.364.如图,在平面内放置两个相同的直角三角板,其中,且三点共线,则下列结论不成立的是A. B.C.与共线 D.5.已知偶函数在区间内单调递增,若,,,则的大小关系为()A. B.C. D.6.若集合,,则()A. B. C. D.7.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限8.已知向量,若,则()A.1或4 B.1或C.或4 D.或9.设,,则()A.且 B.且C.且 D.且10.不等式的解集为,则()A. B.C. D.11.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.12.半径为的半圆卷成一个圆锥,则它的体积是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.求值:____.14.已知角的终边经过点,则________.15.圆的圆心到直线的距离为______.16.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.三、解答题(本大题共6小题,共70分)17.已知函数(且)的图象恒过点A,且点A在函数的图象上.(1)求的最小值;(2)若,当时,求的值域.18.已知函数(,,),其部分图像如图所示.(1)求函数的解析式;(2)若,且,求的值.19.已知函数;(1)求的定义域与最小正周期;(2)求在区间上的单调性与最值.20.设函数f(x)的定义域为I,对于区间,若,x2∈D(x1<x2)满足f(x1)+f(x2)=1,则称区间D为函数f(x)的V区间(1)证明:区间(0,2)是函数的V区间;(2)若区间[0,a](a>0)是函数的V区间,求实数a的取值范围;(3)已知函数在区间[0,+∞)上的图象连续不断,且在[0,+∞)上仅有2个零点,证明:区间[π,+∞)不是函数f(x)的V区间21.已知函数对任意实数x,y满足,,当时,判断在R上的单调性,并证明你的结论是否存在实数a使f
成立?若存在求出实数a;若不存在,则说明理由22.已知函数(1)若不等式的解集为,求的值;(2)当时,求关于的不等式的解集
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【详解】因为,是第二象限的角,所以,所以.所以.故选:B2、B【解析】根据特称命题的否定为全称命题,将并否定原结论,写出命题的否定即可.【详解】由原命题为特称命题,故其否定为“”.故选:B3、C【解析】由弧长的定义,可求得扇形的半径,再由扇形的面积公式,即可求解.【详解】由1弧度的圆心角所对的弧长为6,利用弧长公式,可得,即,所以扇形的面积为.故选C.【点睛】本题主要考查了扇形的弧长公式和扇形的面积公式的应用,着重考查了计算能力,属于基础题.4、D【解析】设BC=DE=m,∵∠A=30°,且B,C,D三点共线,则CD═AB=m,AC=EC=2m,∴∠ACB=∠CED=60°,∠ACE=90°,,故A、B、C成立;而,,即不成立,故选D.5、D【解析】先利用偶函数的对称性判断函数在区间内单调递减,结合偶函数定义得,再判断,和的大小关系,根据单调性比较函数值的大小,即得结果.【详解】偶函数的图象关于y轴对称,由在区间内单调递增可知,在区间内单调递减.,故,而,,即,故,由单调性知,即.故选:D.6、C【解析】根据交集直接计算即可.【详解】因为,,所以,故选:C7、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.8、B【解析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.【详解】由题意,向量,可得,因为,则,解得或.故选:B.9、B【解析】容易得出,,即得出,,从而得出,【详解】,.又,即,,,故选B.【点睛】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于010、A【解析】由不等式的解集为,得到是方程的两个根,由根与系数的关系求出,即可得到答案【详解】由题意,可得不等式的解集为,所以是方程的两个根,所以可得,,解得,,所以,故选:A11、A【解析】将直线方程化为斜截式,由此求得正确答案.【详解】,所以.故选:A12、C【解析】求出扇形的弧长,然后求出圆锥的底面周长,转化为底面半径,求出圆锥的高,然后求出体积.【详解】设底面半径为r,则,所以.所以圆锥高.所以体积.故选:C.【点睛】本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.二、填空题(本大题共4小题,共20分)13、【解析】根据诱导公式以及正弦的两角和公式即可得解【详解】解:因为,故答案为:14、【解析】根据终边上的点,结合即可求函数值.【详解】由题意知:角在第一象限,且终边过,∴.故答案为:.15、1【解析】利用点到直线的距离公式可得所求的距离.【详解】圆心坐标为,它到直线的距离为,故答案为:1【点睛】本题考查圆的标准方程、点到直线的距离,此类问题,根据公式计算即可,本题属于基础题.16、【解析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【点睛】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.三、解答题(本大题共6小题,共70分)17、(1)4;(2).【解析】(1)根据对数函数恒过定点(1,0)求出m和n的关系:,则利用转化为基本不等式求最小值;(2)利用换元法令,将问题转化为二次函数求值域问题即可.【小问1详解】∵,∴函数的图象恒过点.∵在函数图象上,∴.∵,∴,,∴,,∴,当且仅当时等号成立,∴的最小值为4.【小问2详解】当时,,∵在上单调递增,∴当时,,令,则,,在上单调递增,∴当时,;当时,.故所求函数的值域为.18、(Ⅰ);(Ⅱ).【解析】【试题分析】(1)根据图像的最高点求得,根据函数图像的零点和最小值位置可知函数的四分之一周期为,由此求得,代入函数上一个点,可求得的值.(2)利用同角三角函数关系和二倍角公式,求得的值,代入所求并计算得结果.【试题解析】(Ⅰ)由图可知,图像过点(Ⅱ),且19、(1)定义域,;(2)单调递增:,单调递减:,最大值为1,最小值为;【解析】(1)简化原函数,结合定义域求最小正周期;(2)在给定区间上结合正弦曲线,求单调性与最值.试题解析:;(1)的定义域:,最小正周期;(2),即最大值为1,最小值为,单调递增:,单调递减:,20、(1)证明详见解析;(2)a>1;(3)证明详见解析.【解析】(1)取特殊点可以验证;(2)利用的单调递减可以求实数a的取值范围;(3)先证f(x)在上存在零点,然后函数在区间[0,+∞)上仅有2个零点,f(x)在[π,+∞)上不存在零点,利用定义说明区间[π,+∞)不是函数f(x)的V区间.详解】(1)设x1,x2∈(0,2)(x1<x2)若f(x1)+f(x2)=1,则所以lgx1+lgx2=lgx1x2=0,x1x2=1,取,,满足定义所以区间(0,2)是函数的V区间(2)因为区间[0,a]是函数的V区间,所以,x2∈[0,a](x1<x2)使得因为在[0,a]上单调递减所以,,所以,a-1>0,a>1故所求实数a的取值范围为a>1(3)因为,,所以f(x)在上存在零点,又因为f(0)=0所以函数f(x)在[0,π)上至少存在两个零点,因为函数在区间[0,+∞)上仅有2个零点,所以f(x)在[π,+∞)上不存在零点,又因为f(π)<0,所以,f(x)<0所以,x2∈[π,+∞)(x1<x2),f(x1)+f(x2)<0即因此不存在,x2∈[π,+∞)(x1<x2)满足f(x1)+f(x2)=1所以区间[π,+∞)不是函数f(x)的V区间【点睛】本题考查了函数的性质,对新定义的理解,要求不仅好的理解能力,还要有好的推理能力.21、(1)在上单调递增,证明见解析;(2)存在,.【解析】(1)令,则,根据已知中函数对任意实数满足,当时,易证得,由增函数的定义,即可得到在上单调递增;(2)由已知中函数对任意实数满足,,利用“凑”的思想,我们可得,结合(1)中函数在上单调递增,我们可将转化为一个关于的一元二次不等式,解不等式即可得到实数的取值范围试题解析:(1)设,∴,又,∴即,∴在上单调递增(2)令,则,∴∴,∴,即,又在上单调递增,∴,即,解得,故存在这样的实数,即考点:1.抽象函数及其应用;2.函数单调性的判断与证明;3.解不等式.【方法点睛】本题主要考查的是抽象函数及其应用,函数单调性的判断与证明,属于中档题,此类题目解题的核心思想就是对抽象函数进行变形处理,然后利用定义变形求出的大小关系,进而得到函数的单调性,对于解不等式,需要经常用到的利用“凑”的思想,对已知的函数值进行转化,求出常数所对的函数值,从而利用前面证明的函数的单调性进行转化为关于的一元二次不等式,因此正确对抽象函数关系的变形以及利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环境监测数据传输与处理技术考核试卷
- 3-5译码器1电子课件教学版
- 体育场地设施安装的残疾人辅助设施考核试卷
- 渔业技术引进考核试卷
- 纸板容器技术人才发展考核试卷
- 渔业水域生态平衡与保护措施考核试卷
- 灯具制造的数字化生产线考核试卷
- 炼铁废气回收与利用技术应用考核试卷
- 纤维原料的新型应用与创新技术考核试卷
- 下肢深静脉血栓的预防和护理 2
- 各国材料对照表
- 生态安全的主要内容
- 人工智能行业的智能客服技术人员培训
- 浙江超钠新能源材料有限公司高性能钠离子电池材料零碳智能产线项目环评报告
- 《血管活性药物静脉输注》标准解读护理课件
- 《IPV4地址简介》课件
- 天然气管道风险评估模型
- 血液透析发生失衡综合症的原因及预防
- 儿童滑膜炎护理查房
- 瓦特改良蒸汽机课件
- 2024年蚂蚁云客服支付宝云客服工作证客户工作证培训试题及答案
评论
0/150
提交评论