版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.设若,,,则()A. B.C. D.2.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直3.郑州地铁1号线的开通运营,极大方便了市民的出行.某时刻从二七广场站驶往博学路站的过程中,10个车站上车的人数统计如下:70,60,60,60,50,40,40,30,30,10.这组数据的平均数,众数,90%分位数的和为()A.125 B.135C.165 D.1704.函数(,)在一个周期内的图象如图所示,为了得到正弦曲线,只需把图象上所有的点()A.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变B.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变D.向右平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变5.已知x,,且,则A. B.C. D.6.下列各角中与角终边相同的角是()A.-300° B.-60°C.600° D.1380°7.下列选项正确的是()A. B.C. D.8.若函数f(x)=,则f(f())=()A.4 B.C. D.9.已知实数,且,则的最小值是()A.6 B.C. D.10.已知,则()A. B.C. D.的取值范围是11.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.212.三条直线,,相交于一点,则的值是A.-2 B.-1C.0 D.1二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在正三角形中,是上的点,,则________14.已知函数,,则它的单调递增区间为______15.已知一个铜质的实心圆锥的底面半径为6,高为3,现将它熔化后铸成一个铜球(不计损耗),则该铜球的半径是__________16.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.人类已进入大数据时代.目前数据量已经从级别越升到,,乃至级别.某数据公司根据以往数据,整理得到如下表格:时间2008年2009年2010年2011年2012年间隔年份(单位:年)01234全球数据量(单位:)0.50.751.1251.68752.53125根据上述数据信息,经分析后发现函数模型能较好地描述2008年全球产生的数据量(单位:)与间隔年份(单位:年)的关系.(1)求函数的解析式;(2)请估计2021年全球产生的数据量是2011年的多少倍(结果保留3位小数)?参考数据:,,,,,.18.如图所示,正方体的棱长为,过顶点、、截下一个三棱锥.(1)求剩余部分的体积;(2)求三棱锥的高.19.计算(1)-(2)20.已知向量,(1)若,求的值;(2)若,,求的值域21.已知函数(且).(1)若函数的定义域为,求实数的取值范围;(2)函数的定义域为,且满足如下条件:存在,使得在上的值域为,那么就称函数为“二倍函数”.若函数是“二倍函数”,求实数的取值范围.22.已知函数定义在上且满足下列两个条件:①对任意都有;②当时,有,(1)求,并证明函数在上是奇函数;(2)验证函数是否满足这些条件;(3)若,试求函数的零点.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】将分别与比较大小,即可判断得三者的大小关系.【详解】因为,,,所以可得的大小关系为.故选:A2、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.3、D【解析】利用公式可求平均数和90%分位数,再求出众数后可得所求的和.【详解】这组数据的平均数为,而,故90%分位数,众数为,故三者之和为,故选:D.4、B【解析】先利用图像求出函数的解析式,在对四个选项,利用图像变换一一验证即可.【详解】由图像可知:,所以,所以,解得:.所以.又图像经过,所以,解得:,所以对于A:把图象上所有的点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变得到.故A错误;对于B:把图象上所有点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变.故B正确;对于C:把图象上所有点向左平移个单位长度,得到,再把所得图象上所有点的横坐标缩短到原来的,纵坐标不变.故C错误;对于D:把图象上所有的点向右平移个单位长度,得到,再把所得图象上所有点的横坐标伸长到原来的2倍,纵坐标不变得到.故D错误;故选:B5、C【解析】原不等式变形为,由函数单调递增,可得,利用指数函数、对数函数、幂函数的单调性逐一分析四个选项即可得答案【详解】函数为增函数,,即,可得,由指数函数、对数函数、幂函数的单调性可得,B,D错误,根据递增可得C正确,故选C【点睛】本题考查指数函数、对数函数、幂函数的单调性,是中档题.函数单调性的应用比较广泛,是每年高考的重点和热点内容.归纳起来,常见的命题探究角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小;(3)解函数不等式;(4)求参数的取值范围或值6、A【解析】与角终边相同的角为:.当时,即为-300°.故选A7、A【解析】根据指数函数的性质一一判断可得;【详解】解:对于A:在定义域上单调递减,所以,故A正确;对于B:在定义域上单调递增,所以,故B错误;对于C:因为,,所以,故C错误;对于D:因为,,即,所以,故D错误;故选:A8、C【解析】由题意结合函数的解析式求解函数值即可.【详解】由函数的解析式可得:,.故选C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题9、B【解析】构造,利用均值不等式即得解【详解】,当且仅当,即,时等号成立故选:B【点睛】本题考查了均值不等式在最值问题中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题10、B【解析】取判断A;由不等式的性质判断BC;由基本不等式判断D.【详解】当时,不成立,A错误.因为,所以,,B正确,C错误.当,时,,当且仅当时,等号成立,而,D错误故选:B11、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.12、B【解析】联立两条已知直线求得交点坐标,待定系数即可求得参数值.【详解】联立与可得交点坐标为,又其满足直线,故可得,解得.故选:.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质14、(区间写成半开半闭或闭区间都对);【解析】由得因为,所以单调递增区间为15、3【解析】设铜球的半径为,则,得,故答案为.16、##【解析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据题意选取点代入函数解析式,取出参数即可.(2)先求出2021年全球产生的数据量,然后结合条件可得答案.【小问1详解】由题意点在函数模型的图像上则,解得所以【小问2详解】2021年时,间隔年份为13,则2021年全球产生的数据量是2021年全球产生的数据量是2011年的倍数为:18、(1);(2).【解析】(1)由题意,正方体的几何结构特征,结合棱锥和正方体的体积公式,即可求解;(2)由(1),结合,即可求解.【详解】(1)由题意,正方体的棱长为,则正方体的体积为,根据三棱锥的体积公式,可得,所以剩余部分的体积.(2)由(1)知,设三棱锥的高为,则,故,解得.【点睛】求空间几何体的表面积与体积的求法:(1)公式法:对于规则的几何体的表面积和体积,可直接利用公式进行求解;(2)割补法:把不规则的图形分割成规则的图形,然后进行体积的计算,或不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算;(3)等体积法:等体积法也称积转化或等积变形,通过选择合适的底面来求几何体体积的一种方法,多用来解决锥体的体积,特别时三棱锥的体积.19、(1);(2).【解析】(1)综合利用指数对数运算法则运算;(2)利用对数的运算法则化简运算.【详解】解:(1)原式;(2)原式【点睛】本题考查指数对数的运算,属基础题,在指数运算中,往往先将幂化为指数幂,然后利用指数幂的运算法则化简;在对数的运算中,要注意的运用和对数有关公式的运用.20、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【点睛】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.21、(1)(2)【解析】(1)由题意可知,对任意的,恒成立,利用参变量分离法结合指数函数的值域可求得实数的取值范围;(2)分析可知在定义域内单调递增,由“二倍函数”的定义可知关于的二次方程有两个不等的正根,可得出关于实数的不等式组,由此可解得实数的取值范围.【小问1详解】解:的定义域为,所以,恒成立,则恒成立,,,因此,实数的取值范围为.小问2详解】解:当时,因为内层函数为增函数,外层函数为增函数,故函数在定义域内单调递增,当时,因为内层函数为减函数,外层函数为减函数,故函数在定义域内单调递增,若函数是“二倍函数”,则需满足,即,所以,、是关于的方程的两根,设,则关于的方程有两个不等的正根,所以,,解得,因此,实数的取值范围是.22、(1)见解析;(2)见解析;(3).【解析】令代入即可求得,令,则可得,即可证明结论根据函数的解析式求出定义域满足条件,再根据对数的运算性质,计算与并进行比较,根据对数函数的性质判断当时,的符号,即可得证用定义法先证明函数的单调性,然后转化函数的零点为,利用条件进行求解【详解】(1)对条件中的,令得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中物理第九章固体液体和物态变化第2节液体课件新人教版选修3-
- 高考数学全真模拟试题第12625期
- 【中考考点基础练】第11章 内能与热机 2025年物理中考总复习(福建)(含答案)
- 2024年山东省泰安市中考地理试题含答案
- 2024至2030年中国无菌设备数据监测研究报告
- 2024至2030年中国数码固体立体声全自动播放器数据监测研究报告
- 2024至2030年中国微电脑控制抽真空精密加酸机数据监测研究报告
- 2024至2030年中国引线式热敏电阻器行业投资前景及策略咨询研究报告
- 2010-2012年液态豆奶行业市场研究与竞争力分析报告
- 2024至2030年中国土碱行业投资前景及策略咨询研究报告
- 电动单梁起重机年自检报告
- 乡镇结核病防治工作职责
- 模拟深海高压舱试验系统设计方案
- 加热管制作工艺
- 互补输出级介绍
- 设备运输方案
- (完整版)管道代号对照
- 口腔颌面部外伤的救治2
- 市森林消防(防汛)专业队管理制度森林防火扑火队管理制度.doc
- 路缘石拆除更换专项施工方案(精华版)
- 正交试验设计表.doc
评论
0/150
提交评论