版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1CH1:RandomProcessesIntroductionMathematicalDefinitionofaRandomProcessStationaryProcessesMean,Correlation,andCovarianceFunctionsErgodicProcessesTransmissionofaRandomProcessThroughaLinearTime-InvariantFilterPowerSpectralDensityGaussianProcessNoiseNarrowbandNoiseRepresentationofNarrowbandNoiseinTermsofIn-phaseandQuadratureComponentsRepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsSineWavePlusNarrowbandNoiseComputerExperiments:Flat-FadingChannelSummaryandDiscussion21.1IntroductionTwomathematicalmodelsDeterministicStochastic(orrandom)Receivedsignalinacommunicationsystemusuallyconsistsof:Information-bearingsignalRandominterferenceChannelnoise
DescribingthesignalusingstatisticalparametersAveragepower,powerspectraldensity,…3Random(stochastic)processPropertiesFunctionoftimeRandomDefinitionEnsembleoftimefunctionsAprobabilityrule1.2MathematicalDefinitionofaRandomProcess41.2MathematicalDefinitionofaRandomProcess(Cont’d)Figure1.1Anensembleofsamplefunctions.Someconcepts:SamplespaceSRandomprocessX(t,S)=X(t)SamplepointsjRealization(samplefunction)
xj(t)=X(t,sj)Randomvariable51.3StationaryProcessThejointdistributionfunction:Strictlystationary:Foralltimeshifts
,allk,andallpossiblechoicesofobservationtimest1,…,tk,equation(1)isalwaystrue.Twospecialcases(wide-sensestationary):6Example1.1Three
spatialwindowslocatedattimest1,t2,andt3,theprobabilityofthejointevent:
Intermsofthejointdistributionfunction,thisprobabilityequals:1.3StationaryProcessFigure1.2Illustratingtheprobabilityofajointevent.71.3StationaryProcessFigure1.3IllustratingtheconceptofstationaryinExample1.1.81.4Mean,Correlation,andCovarianceFunctionsMean:Autocorrelationfunction:Autocovariancefunction:(Stationary)Cross-correlationfunction:91.4Mean,Correlation,andCovarianceFunctions(Cont’d)Themeanandautocorrelationfunctionprovideapartialdescriptionofarandomprocess.Wide-sensestationaryMeanisaconstantandautocorrelationfunctiondependsonlyontimedifference.OftenusedinpracticeNotnecessarystrictlystationary,andviseverse.10PropertiesoftheAutocorrelationFunctionProperties:DefiningautocorrelationfunctionofastationaryprocessX(t)as:11PropertiesoftheAutocorrelationFunction(Cont’d)Figure1.4Illustratingtheautocorrelationfunctionsofslowlyandrapidlyfluctuatingrandomprocesses.12Example1.2SinusoidalWavewithRandomPhaseAandfcareconstants,and13Example1.2(Cont’d)TheautocorrelationfunctionofX(t)is:14Example1.2(Cont’d)
Figure1.5Autocorrelationfunctionofasinewavewithrandomphase.15Example1.3RandomBinaryWave
Figure1.6Samplefunctionofrandombinarywave.16Example1.3(Cont’d)Figure1.7Autocorrelationfunctionofrandombinarywave.17Cross-CorrelationFunctionsTworandomprocessesX(t)andY(t)withautocorrelationfunctionsRX(t,u)andRY(t,u),thetwocross-correlationfunctionsofX(t)andY(t)aredefinedby:Thecorrelationmatrix:Asymmetryrelationship:18Example1.4Quadrature-ModulatedProcesses
19Example1.4(Cont’d)
201.5ErgodicProcessesUsingtimeaveragestoapproximateensembleaverages.Consideringasamplefunctionx(t)ofastationaryprocessX(t)inanobservationwindow–TtT:(TheDCvalue)TimeaverageX(T)
representsanunbiasedestimateoftheensemble-averagedmeanX.211.5ErgodicProcesses(Cont’d)AprocessX(t)isergodicinthemeaniftwoconditionsaresatisfied:AprocessX(t)isergodicintheautocorrelationfunctioniftwoconditionsaresatisfied:Forarandomprocesstobeergodic,ithastobestationary;butastationaryrandomprocessisnotnecessarilyergodic.221.6TransmissionofaRandomProcessThroughaLinearTime-InvariantFilterFigure1.8transmissionofarandomprocessthroughalineartime-invariantfilter.231.6TransmissionThroughaLinearTime-InvariantFilter(Cont’d)241.7PowerSpectralDensity(PSD)25DefinitionofPSDThepowerspectraldensity(orpowerspectrum)istheFouriertransformoftheautocorrelationfunction.Asaresult,IfThenandfissmall,26PropertiesofPSDThePSDandtheautocorrelationfunctionformaFourier-transformpair.TheEinstein-Wiener-KhintchineRelations27PropertiesofPSD(Cont’d)isaprobabilitydensityfunction.28PSDExample1Sinusoidalwavewithrandomphase29PSDExample1(Cont’d)Figure1.10Powerspectraldensityofsinewavewithrandomphase.30PSDExample2Randombinarywave31PSDExample2(Cont’d)Figure1.11Powerspectraldensityofrandombinarywave.32PSDExample3Mixingofarandomprocesswithasinusoidalprocess33PSD’sofInput/OutputProcesses34PSDandtheMagnitudeSpectrumWeareconsideringanergodicstationaryprocess.Fouriertransformablerequiresabsolutelyintegrable,thatiswhichcannotbesatisfiedbyastationaryfunction.Soweuseatruncatedsegmentofx(t),whoseFouriertransformis35PSDandtheMagnitudeSpectrum(Cont’d)ThePeriodogram36PSDandtheMagnitudeSpectrum(Cont’d)37Cross-SpectralDensities(CSD)Properties38CSDExample139ConceptsStatisticallyindependentanduncorrelatedStatisticallyindependent:F(X,Y)=F(X)F(Y)Uncorrelated:CXY()=0Independentstatisticsarealwaysuncorrelated,buttheconverseisnotnecessarilytrue.40CSDExample2Figure1.12Apairofseparatelineartime-invariantfilters.411.8GaussianProcessDefinition:SupposeSisthesetoflinearfunctionalsofarandomprocessX(t)withfinitemean-squarevalue,ifeveryelementinSisaGaussian-distributedrandomvariable,thenX(t)isaGaussianprocess.Inshort,X(t)isaGaussianprocessifeverylinearfunctionalofX(t)isaGaussianrandomvariable.EasytoprocessandfitformanyphysicalphenomenaAlinearfunctionalofX(t)pdfofGaussiandistribution:pdfofnormalizedGaussiandistributionYN(0,1):42GaussianDistributionFigure1.13NormalizedGaussiandistribution.43CentralLimitTheoremIndependentlyandidenticallydistributed(i.i.d.)randomvariablesXi,i=1,2,…TheXiarestatisticallyindependentTheXihavethesameprobabilitydistributionYiarenormalizedversionofXi Yi=(Xi-x)/X,i=1,2,…Thecentrallimittheorem:44PropertiesofaGaussianProcessIftheinputprocesstoastablelinearfilterisGaussian,thentheoutputprocessisalsoGaussian.ThesetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimesarejointlyGaussian.(CanbeusedasadefinitionofGaussianprocess)DeterminantofMeanvectorCovariancematrix45PropertiesofaGaussianProcess(Cont’d)IfaGaussianprocessisstationary,thentheprocessisalsostrictlystationary.IfasetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimeareuncorrelated,thentheyarestatisticallyindependent.461.9NoiseExternalorinternaltothesystemShotnoiseArisingduetothediscretenatureofcurrentflowinsomeelectronicdevicesNumberofarriversinapre-definedintervalfollowsPoissondistributionThermalNoiseArisingduetorandommotionofelectronsinaconductorUsuallymodeledusingtheThéveninequivalentcircuitortheNortonequivalentcircuitAvailablenoisepoweriskTfwatts.At20ºC,kT-174dBm/Hz47ModelingThermalNoiseFigure1.15Modelsofanoisyresistor.(a)Théveninequivalentcircuit.(b)Nortonequivalentcircuit.48WhiteNoiseAnidealizedformofnoisefornoiseanalysisofcommunicationsystemsFigure1.16Characteristicsofwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.Boltzmann’sconstantEquivalentnoisetemperature49WhiteNoise(Cont’d)SamplesatdifferenttimesonawhitenoiseareuncorrelatedIfthewhitenoiseisGaussian(calledwhiteGaussiannoise),thesamplesarealsostatisticallyindependent(theultimaterandomness)Aslongasthebandwidthofanoiseprocessattheinputofasystemisappreciablylargerthanthatofthesystemitself,wemaymodelthenoiseprocessaswhitenoise.50Example1.10IdealLow-PassFilteredWhiteNoiseFigure1.17Characteristicsoflow-passfilteredwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.51Example1.11CorrelationofWhiteNoisewithaSinusoidalWave52RepresentationsofBand-PassSignals
(Appendix2.3,2.4)Aband-passsignalisdefinedas:Hilberttransform53Band-PassSignals(Cont’d)Pre-envelope54NarrowbandSignalsFig.A2.4
Magnitudespectrumof(a)band-passsignal,(b)pre-envelope,(c)complexenvelope.551.10NarrowbandNoiseFig.1.18(a)Powerspectraldensityofnarrowbandnoise.(b)Samplefunctionofnarrowbandnoise.56NarrowbandNoise(Cont’d)Tworepresentations:In-phaseandquadraturecomponentsEnvelopandphaseEachrepresentationtotallydescribesthenoiseprocess.571.11RepresentationofNarrowbandNoiseinTermsof
In-PhaseandQuadratureComponentsThecanonicalrepresentationofnarrowbandnoisen(t)nI(t):thein-phasecomponentnQ(t):thequadraturecomponentTheyarebothlow-passsignals.Theyarefullyrepresentativeofn(t),exceptfc.58PropertiesoftheIn-PhaseandQuadratureComponentsofaNarrowbandNoiseZeormeanIfn(t)isGaussian,thennI(t)andnQ(t)arejointlyGuassianIfn(t)isstationary,thennI(t)andnQ(t)arejointlystationary59Properties(Cont’d)nI(t)andnQ(t)havethesamepowerspectraldensity60Properties(Cont’d)nI(t)andnQ(t)havethesamevarianceasn(t)Thecross-spectraldensityofnI(t)andnQ(t)ispurelyimaginary61Properties(Cont’d)Ifn(t)isGaussiananditspowerspectraldensitySN(f)issymmetricaboutthemid-bandfrequencyfc,thennI(t)andnQ(t)arestatisticallyindependent.62AnalyzerandSynthesizerFig.1.19(a)Extractionofin-phaseandquadraturecomponentsofanarrowbandprocess.(b)Generationofanarrowbandprocessfromitsin-phaseandquadraturecomponents.63Example1.12:IdealBand-PassFilteredWhiteNoise64Example1.12(Cont’d)Fig.1.20Characteristicsofidealband-passfilteredwhitenoise.
(a)Powerspectraldensity,
(b)Autocorrelationfunction,
(c)Powerspectraldensityofin-phaseandquadraturecomponents.651.12RepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsTheenvelopeofn(t)Thephaseofn(t)Theenveloper(t)andphase(t)arebothsamplefunctionsoflow-passrandomprocesses.66ProbabilityDistributionsoftheEnvelope
andPhaseComponentsTheprobabilitydistributionsarederivedfromthoseofNI(t)andNQ(t).67ProbabilityDistributions(Cont’d)Fig.1.21Illustratingthecoordinatesystemforrepresentationofnarrowbandnoise:(a)intermsofin-phaseandquadraturecomponents,and(b)intermsofenvelopeandphase.DefineThen68ProbabilityDistributions(Cont’d)Rayleighdistribution69ProbabilityDistributions(Cont’d)Fig.1.22
NormalizedRayleighdistribution.701.13SineWavePlusNarrowbandNoiseAssumi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025民办幼儿园教师聘用合同书范本
- 2025监理工程师《合同管理》考点合同生效时间的规定
- 二零二五年度医疗项目项目经理委托合同3篇
- 二零二五年度互联网金融服务公司股权及业务转让合同3篇
- 2025年度纸装修设计创新技术应用合同3篇
- 2025年度企业财务分析与税务筹划咨询服务合同2篇
- 2025年度医疗机构与执业药师签订的药品质量追溯体系合作协议3篇
- 2025年度展台搭建与展会现场布置合同3篇
- 二零二五年度轨道交通设备维修保养协议3篇
- 2025年度养殖技术培训与推广合作合同3篇
- 冶炼烟气制酸工艺设计规范
- 《上帝掷骰子吗:量子物理史话》超星尔雅学习通章节测试答案
- Unit13 同步教学设计2023-2024学年人教版九年级英语全册
- 2023-2024学年河北省保定市满城区八年级(上)期末英语试卷
- 2024成都中考数学第一轮专题复习之专题四 几何动态探究题 教学课件
- 2024合同范本之太平洋保险合同条款
- 万用表的使用
- TDT1062-2021《社区生活圈规划技术指南》
- GB/T 12959-2024水泥水化热测定方法
- 《商务礼仪》试题及答案大全
- 《核电厂焊接材料评定与验收标准》
评论
0/150
提交评论