




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1CH1:RandomProcessesIntroductionMathematicalDefinitionofaRandomProcessStationaryProcessesMean,Correlation,andCovarianceFunctionsErgodicProcessesTransmissionofaRandomProcessThroughaLinearTime-InvariantFilterPowerSpectralDensityGaussianProcessNoiseNarrowbandNoiseRepresentationofNarrowbandNoiseinTermsofIn-phaseandQuadratureComponentsRepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsSineWavePlusNarrowbandNoiseComputerExperiments:Flat-FadingChannelSummaryandDiscussion21.1IntroductionTwomathematicalmodelsDeterministicStochastic(orrandom)Receivedsignalinacommunicationsystemusuallyconsistsof:Information-bearingsignalRandominterferenceChannelnoise
DescribingthesignalusingstatisticalparametersAveragepower,powerspectraldensity,…3Random(stochastic)processPropertiesFunctionoftimeRandomDefinitionEnsembleoftimefunctionsAprobabilityrule1.2MathematicalDefinitionofaRandomProcess41.2MathematicalDefinitionofaRandomProcess(Cont’d)Figure1.1Anensembleofsamplefunctions.Someconcepts:SamplespaceSRandomprocessX(t,S)=X(t)SamplepointsjRealization(samplefunction)
xj(t)=X(t,sj)Randomvariable51.3StationaryProcessThejointdistributionfunction:Strictlystationary:Foralltimeshifts
,allk,andallpossiblechoicesofobservationtimest1,…,tk,equation(1)isalwaystrue.Twospecialcases(wide-sensestationary):6Example1.1Three
spatialwindowslocatedattimest1,t2,andt3,theprobabilityofthejointevent:
Intermsofthejointdistributionfunction,thisprobabilityequals:1.3StationaryProcessFigure1.2Illustratingtheprobabilityofajointevent.71.3StationaryProcessFigure1.3IllustratingtheconceptofstationaryinExample1.1.81.4Mean,Correlation,andCovarianceFunctionsMean:Autocorrelationfunction:Autocovariancefunction:(Stationary)Cross-correlationfunction:91.4Mean,Correlation,andCovarianceFunctions(Cont’d)Themeanandautocorrelationfunctionprovideapartialdescriptionofarandomprocess.Wide-sensestationaryMeanisaconstantandautocorrelationfunctiondependsonlyontimedifference.OftenusedinpracticeNotnecessarystrictlystationary,andviseverse.10PropertiesoftheAutocorrelationFunctionProperties:DefiningautocorrelationfunctionofastationaryprocessX(t)as:11PropertiesoftheAutocorrelationFunction(Cont’d)Figure1.4Illustratingtheautocorrelationfunctionsofslowlyandrapidlyfluctuatingrandomprocesses.12Example1.2SinusoidalWavewithRandomPhaseAandfcareconstants,and13Example1.2(Cont’d)TheautocorrelationfunctionofX(t)is:14Example1.2(Cont’d)
Figure1.5Autocorrelationfunctionofasinewavewithrandomphase.15Example1.3RandomBinaryWave
Figure1.6Samplefunctionofrandombinarywave.16Example1.3(Cont’d)Figure1.7Autocorrelationfunctionofrandombinarywave.17Cross-CorrelationFunctionsTworandomprocessesX(t)andY(t)withautocorrelationfunctionsRX(t,u)andRY(t,u),thetwocross-correlationfunctionsofX(t)andY(t)aredefinedby:Thecorrelationmatrix:Asymmetryrelationship:18Example1.4Quadrature-ModulatedProcesses
19Example1.4(Cont’d)
201.5ErgodicProcessesUsingtimeaveragestoapproximateensembleaverages.Consideringasamplefunctionx(t)ofastationaryprocessX(t)inanobservationwindow–TtT:(TheDCvalue)TimeaverageX(T)
representsanunbiasedestimateoftheensemble-averagedmeanX.211.5ErgodicProcesses(Cont’d)AprocessX(t)isergodicinthemeaniftwoconditionsaresatisfied:AprocessX(t)isergodicintheautocorrelationfunctioniftwoconditionsaresatisfied:Forarandomprocesstobeergodic,ithastobestationary;butastationaryrandomprocessisnotnecessarilyergodic.221.6TransmissionofaRandomProcessThroughaLinearTime-InvariantFilterFigure1.8transmissionofarandomprocessthroughalineartime-invariantfilter.231.6TransmissionThroughaLinearTime-InvariantFilter(Cont’d)241.7PowerSpectralDensity(PSD)25DefinitionofPSDThepowerspectraldensity(orpowerspectrum)istheFouriertransformoftheautocorrelationfunction.Asaresult,IfThenandfissmall,26PropertiesofPSDThePSDandtheautocorrelationfunctionformaFourier-transformpair.TheEinstein-Wiener-KhintchineRelations27PropertiesofPSD(Cont’d)isaprobabilitydensityfunction.28PSDExample1Sinusoidalwavewithrandomphase29PSDExample1(Cont’d)Figure1.10Powerspectraldensityofsinewavewithrandomphase.30PSDExample2Randombinarywave31PSDExample2(Cont’d)Figure1.11Powerspectraldensityofrandombinarywave.32PSDExample3Mixingofarandomprocesswithasinusoidalprocess33PSD’sofInput/OutputProcesses34PSDandtheMagnitudeSpectrumWeareconsideringanergodicstationaryprocess.Fouriertransformablerequiresabsolutelyintegrable,thatiswhichcannotbesatisfiedbyastationaryfunction.Soweuseatruncatedsegmentofx(t),whoseFouriertransformis35PSDandtheMagnitudeSpectrum(Cont’d)ThePeriodogram36PSDandtheMagnitudeSpectrum(Cont’d)37Cross-SpectralDensities(CSD)Properties38CSDExample139ConceptsStatisticallyindependentanduncorrelatedStatisticallyindependent:F(X,Y)=F(X)F(Y)Uncorrelated:CXY()=0Independentstatisticsarealwaysuncorrelated,buttheconverseisnotnecessarilytrue.40CSDExample2Figure1.12Apairofseparatelineartime-invariantfilters.411.8GaussianProcessDefinition:SupposeSisthesetoflinearfunctionalsofarandomprocessX(t)withfinitemean-squarevalue,ifeveryelementinSisaGaussian-distributedrandomvariable,thenX(t)isaGaussianprocess.Inshort,X(t)isaGaussianprocessifeverylinearfunctionalofX(t)isaGaussianrandomvariable.EasytoprocessandfitformanyphysicalphenomenaAlinearfunctionalofX(t)pdfofGaussiandistribution:pdfofnormalizedGaussiandistributionYN(0,1):42GaussianDistributionFigure1.13NormalizedGaussiandistribution.43CentralLimitTheoremIndependentlyandidenticallydistributed(i.i.d.)randomvariablesXi,i=1,2,…TheXiarestatisticallyindependentTheXihavethesameprobabilitydistributionYiarenormalizedversionofXi Yi=(Xi-x)/X,i=1,2,…Thecentrallimittheorem:44PropertiesofaGaussianProcessIftheinputprocesstoastablelinearfilterisGaussian,thentheoutputprocessisalsoGaussian.ThesetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimesarejointlyGaussian.(CanbeusedasadefinitionofGaussianprocess)DeterminantofMeanvectorCovariancematrix45PropertiesofaGaussianProcess(Cont’d)IfaGaussianprocessisstationary,thentheprocessisalsostrictlystationary.IfasetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimeareuncorrelated,thentheyarestatisticallyindependent.461.9NoiseExternalorinternaltothesystemShotnoiseArisingduetothediscretenatureofcurrentflowinsomeelectronicdevicesNumberofarriversinapre-definedintervalfollowsPoissondistributionThermalNoiseArisingduetorandommotionofelectronsinaconductorUsuallymodeledusingtheThéveninequivalentcircuitortheNortonequivalentcircuitAvailablenoisepoweriskTfwatts.At20ºC,kT-174dBm/Hz47ModelingThermalNoiseFigure1.15Modelsofanoisyresistor.(a)Théveninequivalentcircuit.(b)Nortonequivalentcircuit.48WhiteNoiseAnidealizedformofnoisefornoiseanalysisofcommunicationsystemsFigure1.16Characteristicsofwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.Boltzmann’sconstantEquivalentnoisetemperature49WhiteNoise(Cont’d)SamplesatdifferenttimesonawhitenoiseareuncorrelatedIfthewhitenoiseisGaussian(calledwhiteGaussiannoise),thesamplesarealsostatisticallyindependent(theultimaterandomness)Aslongasthebandwidthofanoiseprocessattheinputofasystemisappreciablylargerthanthatofthesystemitself,wemaymodelthenoiseprocessaswhitenoise.50Example1.10IdealLow-PassFilteredWhiteNoiseFigure1.17Characteristicsoflow-passfilteredwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.51Example1.11CorrelationofWhiteNoisewithaSinusoidalWave52RepresentationsofBand-PassSignals
(Appendix2.3,2.4)Aband-passsignalisdefinedas:Hilberttransform53Band-PassSignals(Cont’d)Pre-envelope54NarrowbandSignalsFig.A2.4
Magnitudespectrumof(a)band-passsignal,(b)pre-envelope,(c)complexenvelope.551.10NarrowbandNoiseFig.1.18(a)Powerspectraldensityofnarrowbandnoise.(b)Samplefunctionofnarrowbandnoise.56NarrowbandNoise(Cont’d)Tworepresentations:In-phaseandquadraturecomponentsEnvelopandphaseEachrepresentationtotallydescribesthenoiseprocess.571.11RepresentationofNarrowbandNoiseinTermsof
In-PhaseandQuadratureComponentsThecanonicalrepresentationofnarrowbandnoisen(t)nI(t):thein-phasecomponentnQ(t):thequadraturecomponentTheyarebothlow-passsignals.Theyarefullyrepresentativeofn(t),exceptfc.58PropertiesoftheIn-PhaseandQuadratureComponentsofaNarrowbandNoiseZeormeanIfn(t)isGaussian,thennI(t)andnQ(t)arejointlyGuassianIfn(t)isstationary,thennI(t)andnQ(t)arejointlystationary59Properties(Cont’d)nI(t)andnQ(t)havethesamepowerspectraldensity60Properties(Cont’d)nI(t)andnQ(t)havethesamevarianceasn(t)Thecross-spectraldensityofnI(t)andnQ(t)ispurelyimaginary61Properties(Cont’d)Ifn(t)isGaussiananditspowerspectraldensitySN(f)issymmetricaboutthemid-bandfrequencyfc,thennI(t)andnQ(t)arestatisticallyindependent.62AnalyzerandSynthesizerFig.1.19(a)Extractionofin-phaseandquadraturecomponentsofanarrowbandprocess.(b)Generationofanarrowbandprocessfromitsin-phaseandquadraturecomponents.63Example1.12:IdealBand-PassFilteredWhiteNoise64Example1.12(Cont’d)Fig.1.20Characteristicsofidealband-passfilteredwhitenoise.
(a)Powerspectraldensity,
(b)Autocorrelationfunction,
(c)Powerspectraldensityofin-phaseandquadraturecomponents.651.12RepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsTheenvelopeofn(t)Thephaseofn(t)Theenveloper(t)andphase(t)arebothsamplefunctionsoflow-passrandomprocesses.66ProbabilityDistributionsoftheEnvelope
andPhaseComponentsTheprobabilitydistributionsarederivedfromthoseofNI(t)andNQ(t).67ProbabilityDistributions(Cont’d)Fig.1.21Illustratingthecoordinatesystemforrepresentationofnarrowbandnoise:(a)intermsofin-phaseandquadraturecomponents,and(b)intermsofenvelopeandphase.DefineThen68ProbabilityDistributions(Cont’d)Rayleighdistribution69ProbabilityDistributions(Cont’d)Fig.1.22
NormalizedRayleighdistribution.701.13SineWavePlusNarrowbandNoiseAssumi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第1课时 除法(教学设计)-2023-2024学年二年级下册数学人教版
- 8 装扮我们的教室 第一课时 教学设计-2024-2025学年道德与法治二年级上册统编版
- 《第9课 项目实践》教学设计教学反思-2023-2024学年小学信息技术浙教版2023五年级上册
- 2025年阜阳科技职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 《扇形统计图》(教学设计)-2024-2025学年人教版六年级上册数学
- 2025年钦州幼儿师范高等专科学校高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年重庆安全技术职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 中药复方的临床应用试题及答案
- 2025年贵州机电职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025公共营养师考试的资料准备试题答案分享
- 《职场沟通技巧》(第三版)课件全套 陶莉 项目1-9 有效沟通基本功 - 有效沟通综合实训
- 2024中华人民共和国学前教育法详细解读课件
- DB34T4912-2024二手新能源汽车鉴定评估规范
- 汞中毒课件教学课件
- 1-226海德汉530系统编程和操作说明书(五轴-特详细)
- 高中文言文教学:从“言”到“文”的理性跨越
- 青岛版小学数学四年级下册认识多边形思维导图知识讲解
- 【年产五万吨乙醛工艺设计7100字(论文)】
- 事业单位离岗创业规定2024年
- 压力容器制造程序文件及表格(符合TSG 07-2019特种设备质量保证管理体系)
- 2024年四川省南充市中考英语试卷真题(含官方答案及解析)
评论
0/150
提交评论