版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1CH1:RandomProcessesIntroductionMathematicalDefinitionofaRandomProcessStationaryProcessesMean,Correlation,andCovarianceFunctionsErgodicProcessesTransmissionofaRandomProcessThroughaLinearTime-InvariantFilterPowerSpectralDensityGaussianProcessNoiseNarrowbandNoiseRepresentationofNarrowbandNoiseinTermsofIn-phaseandQuadratureComponentsRepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsSineWavePlusNarrowbandNoiseComputerExperiments:Flat-FadingChannelSummaryandDiscussion21.1IntroductionTwomathematicalmodelsDeterministicStochastic(orrandom)Receivedsignalinacommunicationsystemusuallyconsistsof:Information-bearingsignalRandominterferenceChannelnoise
DescribingthesignalusingstatisticalparametersAveragepower,powerspectraldensity,…3Random(stochastic)processPropertiesFunctionoftimeRandomDefinitionEnsembleoftimefunctionsAprobabilityrule1.2MathematicalDefinitionofaRandomProcess41.2MathematicalDefinitionofaRandomProcess(Cont’d)Figure1.1Anensembleofsamplefunctions.Someconcepts:SamplespaceSRandomprocessX(t,S)=X(t)SamplepointsjRealization(samplefunction)
xj(t)=X(t,sj)Randomvariable51.3StationaryProcessThejointdistributionfunction:Strictlystationary:Foralltimeshifts
,allk,andallpossiblechoicesofobservationtimest1,…,tk,equation(1)isalwaystrue.Twospecialcases(wide-sensestationary):6Example1.1Three
spatialwindowslocatedattimest1,t2,andt3,theprobabilityofthejointevent:
Intermsofthejointdistributionfunction,thisprobabilityequals:1.3StationaryProcessFigure1.2Illustratingtheprobabilityofajointevent.71.3StationaryProcessFigure1.3IllustratingtheconceptofstationaryinExample1.1.81.4Mean,Correlation,andCovarianceFunctionsMean:Autocorrelationfunction:Autocovariancefunction:(Stationary)Cross-correlationfunction:91.4Mean,Correlation,andCovarianceFunctions(Cont’d)Themeanandautocorrelationfunctionprovideapartialdescriptionofarandomprocess.Wide-sensestationaryMeanisaconstantandautocorrelationfunctiondependsonlyontimedifference.OftenusedinpracticeNotnecessarystrictlystationary,andviseverse.10PropertiesoftheAutocorrelationFunctionProperties:DefiningautocorrelationfunctionofastationaryprocessX(t)as:11PropertiesoftheAutocorrelationFunction(Cont’d)Figure1.4Illustratingtheautocorrelationfunctionsofslowlyandrapidlyfluctuatingrandomprocesses.12Example1.2SinusoidalWavewithRandomPhaseAandfcareconstants,and13Example1.2(Cont’d)TheautocorrelationfunctionofX(t)is:14Example1.2(Cont’d)
Figure1.5Autocorrelationfunctionofasinewavewithrandomphase.15Example1.3RandomBinaryWave
Figure1.6Samplefunctionofrandombinarywave.16Example1.3(Cont’d)Figure1.7Autocorrelationfunctionofrandombinarywave.17Cross-CorrelationFunctionsTworandomprocessesX(t)andY(t)withautocorrelationfunctionsRX(t,u)andRY(t,u),thetwocross-correlationfunctionsofX(t)andY(t)aredefinedby:Thecorrelationmatrix:Asymmetryrelationship:18Example1.4Quadrature-ModulatedProcesses
19Example1.4(Cont’d)
201.5ErgodicProcessesUsingtimeaveragestoapproximateensembleaverages.Consideringasamplefunctionx(t)ofastationaryprocessX(t)inanobservationwindow–TtT:(TheDCvalue)TimeaverageX(T)
representsanunbiasedestimateoftheensemble-averagedmeanX.211.5ErgodicProcesses(Cont’d)AprocessX(t)isergodicinthemeaniftwoconditionsaresatisfied:AprocessX(t)isergodicintheautocorrelationfunctioniftwoconditionsaresatisfied:Forarandomprocesstobeergodic,ithastobestationary;butastationaryrandomprocessisnotnecessarilyergodic.221.6TransmissionofaRandomProcessThroughaLinearTime-InvariantFilterFigure1.8transmissionofarandomprocessthroughalineartime-invariantfilter.231.6TransmissionThroughaLinearTime-InvariantFilter(Cont’d)241.7PowerSpectralDensity(PSD)25DefinitionofPSDThepowerspectraldensity(orpowerspectrum)istheFouriertransformoftheautocorrelationfunction.Asaresult,IfThenandfissmall,26PropertiesofPSDThePSDandtheautocorrelationfunctionformaFourier-transformpair.TheEinstein-Wiener-KhintchineRelations27PropertiesofPSD(Cont’d)isaprobabilitydensityfunction.28PSDExample1Sinusoidalwavewithrandomphase29PSDExample1(Cont’d)Figure1.10Powerspectraldensityofsinewavewithrandomphase.30PSDExample2Randombinarywave31PSDExample2(Cont’d)Figure1.11Powerspectraldensityofrandombinarywave.32PSDExample3Mixingofarandomprocesswithasinusoidalprocess33PSD’sofInput/OutputProcesses34PSDandtheMagnitudeSpectrumWeareconsideringanergodicstationaryprocess.Fouriertransformablerequiresabsolutelyintegrable,thatiswhichcannotbesatisfiedbyastationaryfunction.Soweuseatruncatedsegmentofx(t),whoseFouriertransformis35PSDandtheMagnitudeSpectrum(Cont’d)ThePeriodogram36PSDandtheMagnitudeSpectrum(Cont’d)37Cross-SpectralDensities(CSD)Properties38CSDExample139ConceptsStatisticallyindependentanduncorrelatedStatisticallyindependent:F(X,Y)=F(X)F(Y)Uncorrelated:CXY()=0Independentstatisticsarealwaysuncorrelated,buttheconverseisnotnecessarilytrue.40CSDExample2Figure1.12Apairofseparatelineartime-invariantfilters.411.8GaussianProcessDefinition:SupposeSisthesetoflinearfunctionalsofarandomprocessX(t)withfinitemean-squarevalue,ifeveryelementinSisaGaussian-distributedrandomvariable,thenX(t)isaGaussianprocess.Inshort,X(t)isaGaussianprocessifeverylinearfunctionalofX(t)isaGaussianrandomvariable.EasytoprocessandfitformanyphysicalphenomenaAlinearfunctionalofX(t)pdfofGaussiandistribution:pdfofnormalizedGaussiandistributionYN(0,1):42GaussianDistributionFigure1.13NormalizedGaussiandistribution.43CentralLimitTheoremIndependentlyandidenticallydistributed(i.i.d.)randomvariablesXi,i=1,2,…TheXiarestatisticallyindependentTheXihavethesameprobabilitydistributionYiarenormalizedversionofXi Yi=(Xi-x)/X,i=1,2,…Thecentrallimittheorem:44PropertiesofaGaussianProcessIftheinputprocesstoastablelinearfilterisGaussian,thentheoutputprocessisalsoGaussian.ThesetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimesarejointlyGaussian.(CanbeusedasadefinitionofGaussianprocess)DeterminantofMeanvectorCovariancematrix45PropertiesofaGaussianProcess(Cont’d)IfaGaussianprocessisstationary,thentheprocessisalsostrictlystationary.IfasetofrandomvariablesobtainedbysamplingaGaussianrandomprocessatdifferenttimeareuncorrelated,thentheyarestatisticallyindependent.461.9NoiseExternalorinternaltothesystemShotnoiseArisingduetothediscretenatureofcurrentflowinsomeelectronicdevicesNumberofarriversinapre-definedintervalfollowsPoissondistributionThermalNoiseArisingduetorandommotionofelectronsinaconductorUsuallymodeledusingtheThéveninequivalentcircuitortheNortonequivalentcircuitAvailablenoisepoweriskTfwatts.At20ºC,kT-174dBm/Hz47ModelingThermalNoiseFigure1.15Modelsofanoisyresistor.(a)Théveninequivalentcircuit.(b)Nortonequivalentcircuit.48WhiteNoiseAnidealizedformofnoisefornoiseanalysisofcommunicationsystemsFigure1.16Characteristicsofwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.Boltzmann’sconstantEquivalentnoisetemperature49WhiteNoise(Cont’d)SamplesatdifferenttimesonawhitenoiseareuncorrelatedIfthewhitenoiseisGaussian(calledwhiteGaussiannoise),thesamplesarealsostatisticallyindependent(theultimaterandomness)Aslongasthebandwidthofanoiseprocessattheinputofasystemisappreciablylargerthanthatofthesystemitself,wemaymodelthenoiseprocessaswhitenoise.50Example1.10IdealLow-PassFilteredWhiteNoiseFigure1.17Characteristicsoflow-passfilteredwhitenoise.(a)Powerspectraldensity.(b)Autocorrelationfunction.51Example1.11CorrelationofWhiteNoisewithaSinusoidalWave52RepresentationsofBand-PassSignals
(Appendix2.3,2.4)Aband-passsignalisdefinedas:Hilberttransform53Band-PassSignals(Cont’d)Pre-envelope54NarrowbandSignalsFig.A2.4
Magnitudespectrumof(a)band-passsignal,(b)pre-envelope,(c)complexenvelope.551.10NarrowbandNoiseFig.1.18(a)Powerspectraldensityofnarrowbandnoise.(b)Samplefunctionofnarrowbandnoise.56NarrowbandNoise(Cont’d)Tworepresentations:In-phaseandquadraturecomponentsEnvelopandphaseEachrepresentationtotallydescribesthenoiseprocess.571.11RepresentationofNarrowbandNoiseinTermsof
In-PhaseandQuadratureComponentsThecanonicalrepresentationofnarrowbandnoisen(t)nI(t):thein-phasecomponentnQ(t):thequadraturecomponentTheyarebothlow-passsignals.Theyarefullyrepresentativeofn(t),exceptfc.58PropertiesoftheIn-PhaseandQuadratureComponentsofaNarrowbandNoiseZeormeanIfn(t)isGaussian,thennI(t)andnQ(t)arejointlyGuassianIfn(t)isstationary,thennI(t)andnQ(t)arejointlystationary59Properties(Cont’d)nI(t)andnQ(t)havethesamepowerspectraldensity60Properties(Cont’d)nI(t)andnQ(t)havethesamevarianceasn(t)Thecross-spectraldensityofnI(t)andnQ(t)ispurelyimaginary61Properties(Cont’d)Ifn(t)isGaussiananditspowerspectraldensitySN(f)issymmetricaboutthemid-bandfrequencyfc,thennI(t)andnQ(t)arestatisticallyindependent.62AnalyzerandSynthesizerFig.1.19(a)Extractionofin-phaseandquadraturecomponentsofanarrowbandprocess.(b)Generationofanarrowbandprocessfromitsin-phaseandquadraturecomponents.63Example1.12:IdealBand-PassFilteredWhiteNoise64Example1.12(Cont’d)Fig.1.20Characteristicsofidealband-passfilteredwhitenoise.
(a)Powerspectraldensity,
(b)Autocorrelationfunction,
(c)Powerspectraldensityofin-phaseandquadraturecomponents.651.12RepresentationofNarrowbandNoiseinTermsofEnvelopeandPhaseComponentsTheenvelopeofn(t)Thephaseofn(t)Theenveloper(t)andphase(t)arebothsamplefunctionsoflow-passrandomprocesses.66ProbabilityDistributionsoftheEnvelope
andPhaseComponentsTheprobabilitydistributionsarederivedfromthoseofNI(t)andNQ(t).67ProbabilityDistributions(Cont’d)Fig.1.21Illustratingthecoordinatesystemforrepresentationofnarrowbandnoise:(a)intermsofin-phaseandquadraturecomponents,and(b)intermsofenvelopeandphase.DefineThen68ProbabilityDistributions(Cont’d)Rayleighdistribution69ProbabilityDistributions(Cont’d)Fig.1.22
NormalizedRayleighdistribution.701.13SineWavePlusNarrowbandNoiseAssumi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电气传动的产业链分析与案例
- 2026春招:药明康德笔试题及答案
- 2026年桥梁施工质量文化建设的重要性
- 2026年建筑设备智能化变革的示范工程
- 贷款产品宣传课件
- 贴砖安全培训课件
- 货运单位安全培训记录课件
- 货车四轮定位培训课件
- 心理健康护理技巧解析
- 医学影像诊断与疾病监测
- 医疗器械法规考试题及答案解析
- 2025年河南体育学院马克思主义基本原理概论期末考试笔试题库
- 2026年广西出版传媒集团有限公司招聘(98人)考试参考题库及答案解析
- 2026年中国铁路上海局集团有限公司招聘普通高校毕业生1236人备考题库及答案详解1套
- 2026年上海市普陀区社区工作者公开招聘备考题库附答案
- 甘肃省平凉市(2025年)辅警协警笔试笔试真题(附答案)
- 移动式工程机械监理实施细则
- 买房分手协议书范本
- 灵渠流域多民族交往交流交融的历史及启示
- 项目可行性研究报告评估咨询管理服务方案1
- 现代汉语重点知识笔记详解
评论
0/150
提交评论