版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为()A.13.51×106 B.1.351×107 C.1.351×106 D.0.1531×1082.﹣的绝对值是()A.﹣ B.﹣ C. D.3.若代数式有意义,则实数x的取值范围是()A.x=0 B.x=3 C.x≠0 D.x≠34.下列由左边到右边的变形,属于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)5.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.8 B.9 C.10 D.116.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣17.已知方程组,那么x+y的值()A.-1 B.1 C.0 D.58.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α9.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形10.如图,两个转盘A,B都被分成了3个全等的扇形,在每一扇形内均标有不同的自然数,固定指针,同时转动转盘A,B,两个转盘停止后观察两个指针所指扇形内的数字(若指针停在扇形的边线上,当作指向上边的扇形).小明每转动一次就记录数据,并算出两数之和,其中“和为7”的频数及频率如下表:转盘总次数10203050100150180240330450“和为7”出现频数27101630465981110150“和为7”出现频率0.200.350.330.320.300.300.330.340.330.33如果实验继续进行下去,根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率为()A.0.33 B.0.34 C.0.20 D.0.35二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.12.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.13.如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:________.14.已知,正六边形的边长为1cm,分别以它的三个不相邻的顶点为圆心,1cm长为半径画弧(如图),则所得到的三条弧的长度之和为__________cm(结果保留π).15.计算=________.16.如图,如果四边形ABCD中,AD=BC=6,点E、F、G分别是AB、BD、AC的中点,那么△EGF面积的最大值为_____.三、解答题(共8题,共72分)17.(8分)已知一次函数y=x+1与抛物线y=x2+bx+c交A(m,9),B(0,1)两点,点C在抛物线上且横坐标为1.(1)写出抛物线的函数表达式;(2)判断△ABC的形状,并证明你的结论;(3)平面内是否存在点Q在直线AB、BC、AC距离相等,如果存在,请直接写出所有符合条件的Q的坐标,如果不存在,说说你的理由.18.(8分)已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.求BC的长;求证:PB是⊙O的切线.19.(8分)如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)求证:AB=AC;(2)若,求⊙O的半径.20.(8分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.(1)求的值和点的坐标;(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.21.(8分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?22.(10分)计算:(-)-2–2()+23.(12分)观察下列各式:①②③由此归纳出一般规律__________.24.先化简代数式,再从范围内选取一个合适的整数作为的值代入求值。
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
根据科学记数法进行解答.【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B.【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n(1≤│a│<10且n为整数).2、C【解析】
根据负数的绝对值是它的相反数,可得答案.【详解】│-│=,A错误;│-│=,B错误;││=,D错误;││=,故选C.【点睛】本题考查了绝对值,解题的关键是掌握绝对值的概念进行解题.3、D【解析】分析:根据分式有意义的条件进行求解即可.详解:由题意得,x﹣3≠0,解得,x≠3,故选D.点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.4、C【解析】
因式分解是把一个多项式化为几个整式的积的形式,据此进行解答即可.【详解】解:A、B、D三个选项均不是把一个多项式化为几个整式的积的形式,故都不是因式分解,只有C选项符合因式分解的定义,故选择C.【点睛】本题考查了因式分解的定义,牢记定义是解题关键.5、A【解析】分析:根据多边形的内角和公式及外角的特征计算.详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.6、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.7、D【解析】
解:,①+②得:3(x+y)=15,则x+y=5,故选D8、D【解析】
利用旋转不变性即可解决问题.【详解】∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.【点睛】本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.9、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;
B、四条边相等的四边形是菱形,故错误;
C、对角线相互平分的四边形是平行四边形,故错误;
D、对角线相等且相互平分的四边形是矩形,正确;
故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理.10、A【解析】
根据上表数据,出现“和为7”的频率将稳定在它的概率附近,估计出现“和为7”的概率即可.【详解】由表中数据可知,出现“和为7”的概率为0.33.故选A.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为.故答案为:.【点睛】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.12、.【解析】
直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.【详解】过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,由题意可得:O是△ACB的内心,∵AB=5,AC=4,BC=3,∴BC2+AC2=AB2,∴△ABC是直角三角形,∴∠ACB=90°,∴四边形OGCD是正方形,∴DO=OG==1,∴CO=.故答案为.【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.13、这一天的最高气温约是26°【解析】
根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【详解】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°.【点睛】本题考查的是函数图象问题,统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.14、【解析】考点:弧长的计算;正多边形和圆.分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式.解:方法一:先求出正六边形的每一个内角==120°,所得到的三条弧的长度之和=3×=2πcm;方法二:先求出正六边形的每一个外角为60°,得正六边形的每一个内角120°,每条弧的度数为120°,三条弧可拼成一整圆,其三条弧的长度之和为2πcm.15、1【解析】试题解析:3-2=1.16、4.1.【解析】
取CD的值中点M,连接GM,FM.首先证明四边形EFMG是菱形,推出当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,由此可得结论.【详解】解:取CD的值中点M,连接GM,FM.∵AG=CG,AE=EB,∴GE是△ABC的中位线∴EG=BC,同理可证:FM=BC,EF=GM=AD,∵AD=BC=6,∴EG=EF=FM=MG=3,∴四边形EFMG是菱形,∴当EF⊥EG时,四边形EFMG是矩形,此时四边形EFMG的面积最大,最大面积为9,∴△EGF的面积的最大值为S四边形EFMG=4.1,故答案为4.1.【点睛】本题主要考查菱形的判定和性质,利用了三角形中位线定理,掌握菱形的判定:四条边都相等的四边形是菱形是解题的关键.三、解答题(共8题,共72分)17、(1)y=x2﹣7x+1;(2)△ABC为直角三角形.理由见解析;(3)符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函数解析式得到A(8,9),然后利用待定系数法求抛物线解析式;(2)先利用抛物线解析式确定C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,证明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,从而得到∠ABC=90°,所以△ABC为直角三角形;(3)利用勾股定理计算出AC=10,根据直角三角形内切圆半径的计算公式得到Rt△ABC的内切圆的半径=2,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,则AI、BI为角平分线,BI⊥y轴,PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,根据角平分线的性质可判断点P、I、Q、G到直线AB、BC、AC距离相等,由于BI=×2=4,则I(4,1),接着利用待定系数法求出直线AI的解析式为y=2x﹣7,直线AP的解析式为y=﹣x+13,然后分别求出P、Q、G的坐标即可.【详解】解:(1)把A(m,9)代入y=x+1得m+1=9,解得m=8,则A(8,9),把A(8,9),B(0,1)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣7x+1;故答案为y=x2﹣7x+1;(2)△ABC为直角三角形.理由如下:当x=1时,y=x2﹣7x+1=31﹣42+1=﹣5,则C(1,﹣5),作AM⊥y轴于M,CN⊥y轴于N,如图,∵B(0,1),A(8,9),C(1,﹣5),∴BM=AM=8,BN=CN=1,∴△ABM和△BNC都是等腰直角三角形,∴∠MBA=45°,∠NBC=45°,AB=8,BN=1,∴∠ABC=90°,∴△ABC为直角三角形;(3)∵AB=8,BN=1,∴AC=10,∴Rt△ABC的内切圆的半径=,设△ABC的内心为I,过A作AI的垂线交直线BI于P,交y轴于Q,AI交y轴于G,如图,∵I为△ABC的内心,∴AI、BI为角平分线,∴BI⊥y轴,而AI⊥PQ,∴PQ为△ABC的外角平分线,易得y轴为△ABC的外角平分线,∴点I、P、Q、G为△ABC的内角平分线或外角平分线的交点,它们到直线AB、BC、AC距离相等,BI=×2=4,而BI⊥y轴,∴I(4,1),设直线AI的解析式为y=kx+n,则,解得,∴直线AI的解析式为y=2x﹣7,当x=0时,y=2x﹣7=﹣7,则G(0,﹣7);设直线AP的解析式为y=﹣x+p,把A(8,9)代入得﹣4+n=9,解得n=13,∴直线AP的解析式为y=﹣x+13,当y=1时,﹣x+13=1,则P(24,1)当x=0时,y=﹣x+13=13,则Q(0,13),综上所述,符合条件的Q的坐标为(4,1),(24,1),(0,﹣7),(0,13).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、角平分线的性质和三角形内心的性质;会利用待定系数法求函数解析式;理解坐标与图形性质是解题的关键.18、(1)BC=2;(2)见解析【解析】试题分析:(1)连接OB,根据已知条件判定△OBC的等边三角形,则BC=OC=2;(2)欲证明PB是⊙O的切线,只需证得OB⊥PB即可.(1)解:如图,连接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等边三角形,∴BC=OC.又OC=2,∴BC=2;(2)证明:由(1)知,△OBC的等边三角形,则∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半径,∴PB是⊙O的切线.考点:切线的判定.19、(1)证明见解析;(2)1.【解析】
(1)由同圆半径相等和对顶角相等得∠OBP=∠APC,由圆的切线性质和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,则∠ABP=∠ACB,根据等角对等边得AB=AC;(2)设⊙O的半径为r,分别在Rt△AOB和Rt△ACP中根据勾股定理列等式,并根据AB=AC得52﹣r2=(2)2﹣(5﹣r)2,求出r的值即可.【详解】解:(1)连接OB,∵OB=OP,∴∠OPB=∠OBP,∵∠OPB=∠APC,∴∠OBP=∠APC,∵AB与⊙O相切于点B,∴OB⊥AB,∴∠ABO=90°,∴∠ABP+∠OBP=90°,∵OA⊥AC,∴∠OAC=90°,∴∠ACB+∠APC=90°,∴∠ABP=∠ACB,∴AB=AC;(2)设⊙O的半径为r,在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,在Rt△ACP中,AC2=PC2﹣PA2,AC2=(2)2﹣(5﹣r)2,∵AB=AC,∴52﹣r2=(2)2﹣(5﹣r)2,解得:r=1,则⊙O的半径为1.【点睛】本题考查了圆的切线的性质,圆的切线垂直于经过切点的半径;并利用勾股定理列等式,求圆的半径;此类题的一般做法是:若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系;简记作:见切点,连半径,见垂直.20、(1),;(2);的取值范围是:.【解析】
(1)把代入得出的值,进而得出点坐标;(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围.【详解】解:(1)∵直线:经过点,∴,∴,∴;(2)当时,将代入,得,,∴代入得,,∴;(3)当时,即,而,如图,,当向下运动但是不超过轴时,符合要求,∴的取值范围是:.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.21、(1)50件;(2)120
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025个人知识产权质押贷款合同范本二零二五3篇
- 2025年度危险化学品堆放场地租赁及安全管理合同3篇
- 2025年度特色美食街餐饮资源承包合作合同3篇
- 2025年度星级酒店餐饮部承包经营合同范本3篇
- 2025年度塔吊设备租赁、维修及保养综合服务合同4篇
- 2025年度生活用品代购委托合同4篇
- 2025年度塔吊司机职业健康体检服务合同范本2篇
- 2024种植业土地租赁合同
- 2025年度消防安全责任合同范本详解3篇
- 2024版内部施工合同
- 2025年工程合作协议书
- 2025年山东省东营市东营区融媒体中心招聘全媒体采编播专业技术人员10人历年高频重点提升(共500题)附带答案详解
- 2025年宜宾人才限公司招聘高频重点提升(共500题)附带答案详解
- KAT1-2023井下探放水技术规范
- 垃圾处理厂工程施工组织设计
- 天疱疮患者护理
- 驾驶证学法减分(学法免分)题库及答案200题完整版
- 2024年四川省泸州市中考英语试题含解析
- 2025届河南省九师联盟商开大联考高一数学第一学期期末学业质量监测模拟试题含解析
- 抚养权起诉状(31篇)
- 2024年“一岗双责”制度(五篇)
评论
0/150
提交评论