17.1.1勾股定理导学案_第1页
17.1.1勾股定理导学案_第2页
17.1.1勾股定理导学案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

17.1勾股定理(1学习标:.了解股定理发现过,掌握股定理内容,用面积证明勾定理。.培养实际生中发现题总结律的意和能力.介绍国古代勾股定研究方所取得成就,发爱国情,勤学习。重点:勾股定理内容及明。难点:勾股定理证明。学习程:一.勾股理的究:()将几全等等腰角三角如图放,其中ABC是角三.

AAB

C可发:大正形的积两个正方的面积之,即大方形长的平两个正方形边的平方和,可得出论,中和是角边,斜边用eq\o\ac(△,Rt)ABC的表示.2、如果不是等腰三角形而是一般的直角三形还会有刚才的结论吗?探究:如下图填表(每个小正方形的面积为单位1

()左图:的面=;B的积=

C面积=;()的面怎么求?()右:A的面积;B面积=;

C的面积根据所填数据,你得到了什么结论?__________________________________根据刚才发现的结论用直角三角形的两直角边长a、b和斜边长c来表示图中正方形的面积吗?※__________勾股定理如果直角角形两直角边长分为ab,斜边长为c,那么

理理二.定理证明方法一:4个大方形=____S正方形____4个Rt△的面积__________面相等证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论