版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.Faraday’sLawofElectromagneticInductionReview22.Maxwell’sEquations3.ElectromagneticBoundaryConditionsTheintegralformThedifferentialform
SignificanceFaraday’slaw(电磁感应定律)Ampere’scircuitallaw(全电流定律)Gauss’slaw(高斯定理)Noisolatedmagneticcharge(磁通连续性原理)3MaintopicTime-VaryingFieldsandMaxwell’sEquations1.PotentialFunctions2.WaveEquationsandTheirSolutions3.Time-HarmonicFields4Thedifferentialform
解方程:1)直接求解2)寻找电场和磁场分别满足的方程(去耦)3)位函数的方法1.PotentialFunctions5
Supposethemediumislinear,homogeneous,andisotropic,fromMaxwell’sequationwefindWehave6ThesamewayWehave7
Therelationshipbetweenthefieldintensitiesandthesourcesisquite
complicated(复杂).Tosimplifytheprocess,itwillbehelpfultosolvethetime-varyingelectromagneticfieldsbyintroducingtwo
auxiliary
functions:the
scalar
andthe
vector
potentials.whereA
iscalledthe
vectorpotential.SubstitutingtheaboveequationintogivesDueto,hence
B
canbeexpressedintermsofthecurlofavectorfield
A,asgivenbyWehave8ThusitcanbeexpressedintermsofthegradientofascalarV
,sothatwhereViscalledthe
scalarpotential,andwehave
Thevectorpotential
A
andthescalarpotential
V
arefunctionsof
time
and
space.
Iftheyare
independentoftime,thentheresultsarethesameasthatofthe
static
fields.Therefore,thevectorpotential
A
isalsocalledthe
vectormagneticpotential
(矢量磁位)
andthescalarpotential
V
isalsocalledthe
scalarelectricpotential(标量电位).
9
Inordertoderivetherelationshipbetweenthepotentialsandthesources,fromthedefinitionofthepotentialsandMaxwell’sequationsweobtainUsing,theaboveequationsbecome10
Thecurlofthevectorfield
A
isgivenas,butthedivergencemustbespecified.Thentheabovetwoequationsbecome
Lorentzcondition(洛伦兹条件)
Afterthedivergenceofthevectorpotential
A
isgivenbytheLorentzcondition,theequationsaresimplified.Theoriginalequationsaretwo
coupled
equations,whilenewequationsare
decoupled.Inprinciple,thedivergencecanbetakenarbitrarily,buttosimplifytheapplicationoftheequations,wecanseethatiflet
Thevectorpotential
A
onlydependsonthe
current
J,whilethescalarpotential
V
isrelatedtothe
chargedensity
only.11
Ifthecurrentandthechargeareknown,thenthevectorpotential
A
andthescalarpotential
V
canbedetermined.After
A
and
V
arefound,theelectricandthemagneticfieldscanbeobtained.
TheoriginalEquationsaretwovectorequationswithcomplicatedstructure,andinthree-dimensionalspace,sixcoordinatecomponentsneedtobesolved.
Newpotentialequationsareavectorequationandascalarequation,respectively.
Consequently,thesolutionofMaxwell’sequationsisrelatedtothatoftheequationsforthe
potentialfunctions,andthesolutionis
simplified.
Inthree-dimensionalspace,onlyfourcoordinatecomponentsneedtobefound.12Inparticular,in
rectangular
coordinatesystemthevectorequationcanberesolvedintothreescalar
equations.132.WaveEquationsandTheirSolutionsItmeansthatonecansolvethenon-homogeneouswaveequationsforgivenchargeandcurrentdistributionsandJ.WithAandV
determined,EandBcanbefoundfrom14xPzyrO直接求解方程仍需要较多的数学知识,这里根据静态场的结果,采用类比的方法,推出其解。1)点电荷的场2)叠加原理PzyrdV'OV'r'r-r'S'15
Herewefindthesolutionbyusingan
analogousmethod
basedontheresultsof
static
fields.
Ifthesourceisatime-varyingpointchargeplacedat
theorigin,thedistributionofthefieldshouldbeafunctionofthevariableR
only,andindependentoftheangles
and
.
Thescalarpotentialcausedbya
pointcharge
isobtainedfirst,thenuse
superpositionprinciple
toobtainthesolutionofthescalarpotentialduetoa
distribution
oftime-varyingcharge.whereIntheopenspace
excludingtheorigin,thescalarpotentialfunctionsatisfiesthefollowingequation16《数学物理方法》梁昆淼第三版P170-178一维波动方程的解达朗贝尔公式
定解问题弦振动方程、传输线方程通解:(a)作变量代换:(b)根据复合函数求导:(c)通解:17(d)通解的物理意义:波形波形f(x)以速度a向右传播的行波波形f(x)以速度a向左传播的行波行波Travelingwave波的入射、反射与透射在无限大均匀媒质中没有反射波,即f1=0。1819
Theaboveequationisthe
homogeneous
waveequationforthefunction(VR),andthe
generalsolution
is
Wewillknowthatthe
secondterm
iscontrarytothephysicalsituation(违背客观事实),anditshouldbe
excluded.Therefore,wefindthescalarelectricpotentialas
TheelectricpotentialproducedbythestaticelementalchargeattheoriginisComparingtheabovetwoequations,weknow20Hence,wefindtheelectricpotentialproducedbythetime-varyingelementalchargeattheoriginaswhere
R
isthedistancetothefieldpointfromthecharge
dV.
Fromtheaboveresult,theelectricpotentialproducedbythe
volumecharge
in
V
canbeobtainedasR'RzyxV(R,t)V'dV'R'-RO21
Tofindthevectorpotentialfunction
A,theaboveequationcanbeexpandedin
rectangular
coordinatesystem,withallcoordinatecomponentssatisfyingthe
same
inhomogeneouswaveequation,i.e.
Apparently,foreachcomponentwecanfindasolution
similar
tothatof
scalar
potentialequation.
Incorporating
thethreecomponentsgivesthesolutionofthevectorpotential
A
as22
Bothequationsshowthatthesolutionofthescalarorthevectorpotentialatthemoment
t
isrelatedtothesourcedistributionatthe
moment
.
Itmeansthatthefieldproducedbythesourceat
R
needsa
certaintime
toreach
R,andthistimedifferenceis.
Inotherwords,thefieldat
t
doesnotdependonthesourceatthesamemoment,butonthesourceat
anearliertime.
Thequantityisthe
distance
betweenthesourcepointandthefieldpoint,and
u
standsforthepropagationvelocity
oftheelectromagneticwave.23
Thechangewithrespect
totime
inhescalarelectricpotential
V
andthevectormagneticpotential
A
isalways
lagging
behindthesources.Hencethefunctions
V
and
A
arecalledthe
retardedpotentials(滞后位).
Sincethetimefactorimpliesthattheevolutionofthefieldprecedesthatofthesource,itviolates
causality,andmustbeabandoned(舍弃).
Thetimefactorcanberewrittenas
Forapointchargeplaced
inopenfreespace(自由空间)thisreflectivewavecannotexist.
Hence,thefunctioncanbeconsideredasawavetravelingtowardtheoriginas
areflectedwave(反射波)fromadistantlocation.24
Fromwecanseethatthepropagationvelocityofelectromagneticwaveisrelatedtothe
properties
ofthemedium.Invacuum,whichisthepropagation
velocityoflight(光速)
invacuum,alsocalledthespeedoflight,usuallydenotedas
c.
Itisworthnotingthatthefieldatapointawayfromthesourcemaystillbepresentatamoment
after
thesourceceasestoexist.
Energy
released
byasourcetravelsawayfromthesourceandcontinuoustopropagateevenafterthesourceis
takenaway.Thisphenomenonisaconsequenceof
electromagneticradiation(电磁辐射).
25
Radiation
isassociatedwitha
time-varyings(时变)
electromagneticfieldwhile
static(静)fieldmustbetiedtoa
source,andthestaticfieldiscalledthe
bound
field(束缚场).
Thetransitionfromrear-fieldtofar-fielddependsnotonlyonthe
distance(距离)butalsothe
timerate
ofchange(时间变化率)
ofthesource.
Atapoint
close
toatime-varyingchargeorcurrent,thefieldvariesalmostinsynchronism(同步)withthesource.Thefieldinthisregioniscalledthe
nearfield,whichis
quasi-static(准静态)
innature.
Atapoint
veryfaraway
fromthesource,the
delayintheactionofthefieldwithrespecttothesourcewillbecomehighlynoticeable.Thefieldinthisregionisreferredtoasthe
farfield,anditiscalledradiationfield(辐射场).
Atransmissionantennaneedstobeexcitedbya
highfrequency(高频)
currentinordertoradiateefficiently,whilethe
50Hz
powerlinecurrenthas
little
radiationeffect.
264.PotentialFunctions5.WaveEquationsandTheirSolutionsReview27homeworkThankyou!Bye-bye!P.7-13;7-14;28Maxwell’sequationsandalltheequationsderivedfromthemsofarinthischapterholdforelectromagneticquantitieswithanarbitrarytime-dependence(时间任意相关).Theactualtypeoftimefunctionsthatthefieldquantitiesassumedependson(取决于)thesource(源)functions
andJ.Inengineering,oneofthe
mostimportant
casesoftime-varyingelectromagneticfieldsisthe
time-harmonic(sinusoidal)field(时谐场、正弦场).Inthistypeoffield,the
excitation
sourcevaries
sinusoidally
intimewith
a
singlefrequency(单一频率).In
alinearsystem(线性系统),asinusoidallyvarying
source
generates
fields
thatalsovarysinusoidallyintimeatallpointsinthesystem(正弦变化的源产生正弦变化的场).1)whatisTime-HarmonicFields3.Time-HarmonicFields292)讨论时谐场(正弦信号)的原因Whenfieldsareexaminedinthismanner,thereisnolossingeneralityas(a)Theyareeasytogenerate(b)anytime-varyingperiodicfunctioncanberepresentedbyaFourierseriesintermsofsinusoidalfunctions(c)theprincipleofsuperpositioncanbeappliedunderlinearconditions.Inotherwords,wecanobtainthecompleteresponseoftimevaryingperiodicfieldsbyusinglinearcombinationsofmonochromaticresponses(a)正弦信号容易产生,50Hz交流电,通信的载波都是正弦信号(b)从信号分析的角度来看,正弦信号是一种简单基本的信号。正弦信号进行各种运算(加减微分积分后仍为同频率正弦信号)(c)傅立叶分析:任意周期信号分解为不同频率的正弦之和(d)线性系统的叠加原理303.1
电路中的相量表达式Incircuittheory,youhavealreadyusedthephasornotation(相量)torepresentvoltagesandcurrentsvaryingsinusoidallyintime(1)Instantaneous(time-dependent)expressionofasinusoidalscalarquantity(瞬时值)三角函数表达式3Parameters:
angularfrequency:
amplitude:Im
phase:(2)
复数的表示xjyP(x,y)复平面上一点P31(3)正弦表达式和相量表达式的对应关系相量的模正弦量的幅值初位相复角频率是已知?频率相量乘以ejt,再取实部32EXAMPLE7-6P337-338333.2
Time-harmonicElectromagneticsFieldvectorsthatvarywithspacecoordinatesandaresinusoidalfunctionsoftimecansimilarlyberepresentedbyvectorphasors(矢量相量)thatdependonspacecoordinatesbutnotontime.Asanexample,wecanwriteatime-harmonicE
fieldreferringtocostaswhereE(x,y,z)isavectorphasor(矢量相量)thatcontainsinformationondirection(方向),magnitude(振幅),andphase(相位).Phasorsare,ingeneral,complexquantities.weseethat,ifE(x,y,z,t)istoberepresentedbythevectorphasorE(x,y,z),thenE(x,y,z,t)/tandE(x,y,z,t)dtwouldberepresentedby,respectively,vectorphasorsjE(x,y,z)
andE(x,y,z)/j.Higher-orderdifferentiationsandintegrationswithrespecttowouldberepresented,respectively,bymultiplicationsanddivisionsofthephasorE(x,y,z)byhigherpowersofj.3435
已知正弦电磁场的场与源的频率相同,因此可用复矢量形式表示麦克斯韦方程。考虑到正弦时间函数的时间导数为或因此,麦克斯韦第一方程可表示为
上式对于任何时刻均成立,实部符号可以消去,即36瞬时值由相量值代替时间求导由jω代替Wenowwritetime-harmonicMaxwell’sequations(时谐麦克斯韦方程组)intermsofvectorfieldphasors(E,H)andsourcephasors(,J)inasimple(linear,isotropic,andhomogenous)mediumasfollows.37Thetime-harmonicwaveequations(时谐波动方程)forEandHbecome,respectively,Thetime-harmonicwaveequationsforscalarpotentialVandvectorpotentialAbecome,respectively,Letiscalledthewavenumber.38Then
Considerthetimedelayfactor,forasinusoidalfunctionitleadstoaphasedelayof.
Weobtain39ThecomplexLorentzconditionis
Thecomplexelectricandmagneticfieldscanbeexpressedintermsofthecomplexpotentialsas
403.3
source-free(无源)fieldsinsimplemediaInasimple,nonconducting(非导电)source-freemediumcharacterizedby=0,J=0,=0,thetime-harmonicMaxwell’sequationsbecome
41whicharehomogeneousvectorHelmholtz’sequations(齐次矢量亥姆霍兹方程).andwaveequationsforAandV
becomeThetime-harmonicwaveequationsforEandHbecome,respectively,Letiscalledthewavenumber.42Ifthesimplemediumisconducting(0)(导电介质),acurrentJ=Ewillflow,andtheequationshouldbechangedtowithTheotherthreeequationsinMaxwell’sequationareunchanged.Hence,allthepreviousequationsfornonconducting(非导电)mediawillapplytoconductingmediaifisreplacedbythecomplexpermittivity
c.Meanwhile,thereal(实数)wavenumberkinthehelmholtz’sequationsshouldbechangedtoacomplex(复数)wavenumber:43Theratio’’/’
iscalledalosstangent(损耗正切)becauseitisameasureofthepowerlossinthemedium:Thequantityc
maybecalledthelossangle(损耗角).Amediumissaidtobeagoodconductor(良导体)if>>,andagoodinsulator(良绝缘体)if<<.Thus,amaterialmaybeagoodconductoratlowfrequencies(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内审和管理评审培训课件
- 手球指纹课件教学课件
- 营养门诊课件教学课件
- 第三章第一节第二课时铁盐和亚铁盐高一上学期化学人教版(2019)必修第一册
- 护理学科建设竞聘
- 2.3.2气体摩尔体积 课件 高一上学期化学人教版(2019)必修第一册
- 新食品安全责任制度
- 沉与浮科学教案反思
- 化学反应速率说课稿
- 好玩的沙子说课稿
- 《小动物眼科学》课件
- 特殊儿童心理辅导理论与实务 课件 第4、5章 特殊儿童心理辅导与治疗的基本方法、特殊儿童常见的心理行为问题及辅导
- 2024年可靠性工程师培训
- 如何引导孩子明确自己的兴趣与爱好
- 脊髓电刺激促醒“植物人”
- 四年级科学上册(苏教版)第12课点亮小灯泡(教学设计)
- 人教版《道德与法治》七年级上册做更好的自己课件
- 2024年《铁路劳动安全》考试复习题库(含答案)
- 2024年内科护理学(第七版)期末考试复习题库(含答案)
- 脑出血之基底节出血查房护理课件
- 安全:不乱吃东西
评论
0/150
提交评论