版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第Page\*MergeFormat23页共NUMPAGES\*MergeFormat23页第1讲集合的概念与运算1.集合与元素(1)集合元素的三个特征:、、.(2)元素与集合的关系是或关系,用符号或表示.(3)集合的表示法:、、.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号[注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中集合相等集合A,B中元素相同A=B3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B=A∩B=∁UA=考点1集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.(2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.[典例](2022·山东模拟)(1)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4(2)设A=eq\b\lc\{\rc\}(\a\vs4\al\co1(2,3,a2-3a,a+\f(2,a)+7)),B={|a-2|,3},已知4∈A且4∉B,则a的取值集合为________.[举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合,若,则实数a的取值范围为(
)A.B. C. D.2.(2022·菏泽模拟)设a,b∈R,集合{1,a+b,a}=eq\b\lc\{\rc\}(\a\vs4\al\co1(0,\f(b,a),b)),则b-a=()A.1 B.-1C.2 D.-23.(多选)(2022·广州一调)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0 B.eq\f(1,2)C.1 D.24.(2022·福建·模拟预测)设集合,,则集合元素的个数为(
)A.2 B.3 C.4 D.55.(2022·武汉校级月考)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.考点2集合的基本关系[名师点睛]解决有关集合间的基本关系问题的策略(1)一般利用数轴法、Venn图法以及结构法判断两集合间的关系,如果集合中含有参数,需要对式子进行变形,有时需要进一步对参数分类讨论.(2)确定非空集合A的子集的个数,需先确定集合A中的元素的个数.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素满足的式子或区间端点间的关系,常用数轴法、Venn图法.[典例](1)(2021·八省联考)已知M,N均为R的子集,且∁RM⊆N,则M∪(∁RN)=()A.∅ B.MC.N D.R(2)[2022·广东阳江月考]已知集合A={x|y=eq\r(4-x2)},B={x|a≤x≤a+1},若B⊆A,则实数a的取值范围为()A.(-∞,-3]∪[2,+∞) B.[-1,2]C.[-2,1] D.[2,+∞)[举一反三]1.(2022·广东广州·一模)已知集合,,则的子集个数为(
)A.2 B.3 C.4 D.62.[2022·湖北武汉摸底]已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.43.(2022·山东·潍坊一中模拟预测)已知集合M,N是全集U的两个非空子集,且,则(
)A. B. C. D.4.[2021·湖南长沙长郡中学适应性考试]已知集合A={x∈Z|x≥a},集合B={x∈Z|2x≤4}.若A∩B只有4个子集,则实数a的取值范围是()A.(-2,-1] B.[-2,-1]C.[0,1] D.(0,1]5.[2022·吉林辽源五校期末联考]已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.考点3集合的基本运算[名师点睛]利用集合的运算求参数的值或取值范围的方法(1)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.(2)若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[典例]1.(1)(2021·全国·高考真题)设集合,则(
)A. B. C. D.(2)(多选)[2022·湖南长沙模拟]已知全集U=R,集合M={x|-3≤x<4},N={x|x2-2x-8≤0},则()A.M∪N={x|-3≤x<4}B.M∩N={x|-2≤x<4}C.(∁UM)∪N=(-∞,-3)∪[-2,+∞)D.M∩(∁UN)=(-3,-2)2.(1)(2020·高考全国卷Ⅰ)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4 B.-2C.2 D.4(2)[2022·湖南六校联考]集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4[举一反三]1.(2022·河北石家庄·二模)已知集合,,则(
)A. B. C. D.2.[2022·华南师范大学附属中学月考]已知集合A={x|x<3},B={x|x>a},若A∩B≠∅,则实数a的取值范围为()A.[3,+∞) B.(3,+∞)C.(-∞,3) D.(-∞,3]3.(2020·高考全国卷Ⅲ)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4 D.64.(2022·重庆·二模)已知集合,则下图中阴影部分表示的集合为(
)A. B. C. D.5.(2021·全国·高考真题(理))已知集合,,则(
)A. B. C. D.6.[2021·豫北名校联考]设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0},若A∩B中恰含有一个整数,则实数a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3,4))) B.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,4),\f(4,3)))C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,4),+∞)) D.(1,+∞)7.(2020·浙江·高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足:①对于任意x,yS,若x≠y,都有xyT②对于任意x,yT,若x<y,则S;下列命题正确的是(
)A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素考点4集合中的创新问题[名师点睛]1.首先分析新定义的特点,把新定义所叙述的问题本质弄清楚,并能够应用到具体的解题过程之中,这是解决新定义型问题的关键所在;2.集合的性质(概念、元素的性质、运算性质等)是解决新定义集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些信息,在关键之处用好集合的性质。[典例]1.(2022·北京房山·一模)已知U是非实数集,若非空集合A1,A2满足以下三个条件,则称(A1,A2)为集合U的一种真分拆,并规定(A1,A2)与(A2,A1)为集合U的同一种真分拆①A1∩A2=0②A1A2=U③的元素个数不是中的元素.则集合U={1,2,3,4,5,6}的真分拆的种数是(
)A.5 B.6 C.10 D.152.[2022·广东六校联考]已知集合A0={x|0<x<1}.给定一个函数y=f(x),定义集合An={y|y=f(x),x∈An-1},若An∩An-1=∅对任意的x∈N*成立,则称该函数具有性质“∅”.(1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y=eq\f(1,x);②y=x2+1;③y=coseq\f(π,2)x+2.其中具有性质“∅”的函数的序号是________.3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是()A.最多人数是55 B.最少人数是55C.最少人数是75 D.最多人数是80[举一反三]1.(2022·湖南·雅礼中学一模)已知集合,,定义集合,则中元素的个数为A.77 B.49 C.45 D.302.[2021·四川成都联考]已知集合A={1,2,3,4,5,6}的所有三个元素的子集记为B1,B2,B3,…,Bk,k∈N*.记bi为集合Bi(i=1,2,3,…,k)中的最大元素,则b1+b2+b3+…+bk=()A.45 B.105C.150 D.2103.[多选][2022·湘赣皖十五校第一次联考]已知集合M,N都是非空集合U的子集,令集合S={x|x恰好属于M,N中的一个},下列说法正确的是()A.若S=N,则M=∅B.若S=∅,则M=NC.若S⊆M,则M⊆ND.∃M,N,使得S=(∁UM)∪(∁UN)4.[2022·湖北华大新联盟考试]中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知A={x|x=3n+2,n∈N*},B={x|x=5n+3,n∈N*},C={x|x=7n+2,n∈N*},若x∈(A∩B∩C),则整数x的最小值为()A.128 B.127C.37 D.235.[2022·山东省实验中学第二次诊断]若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的.请写出满足上述条件的一个有序数组(a,b,c,d)=________,符合条件的全部有序数组(a,b,c,d)的个数是________.6.[2022·山东潍坊重点高中联考]已知U={a1,a2,a3,a4},集合A是集合U中的两个元素所组成的集合,且同时满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A.求集合A.第1讲集合的概念与运算1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN*(或N+)ZQR[注意]N为自然数集(即非负整数集),包含0,而N*和N+的含义是一样的,表示正整数集,不包含0.2.集合间的基本关系表示关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⫋B(或B⫌A)集合相等集合A,B中元素相同A=B3.集合的基本运算集合的并集集合的交集集合的补集图形语言符号语言A∪B={x|x∈A或x∈B}A∩B={x|x∈A且x∈B}∁UA={x|x∈U且x∉A}考点1集合的含义与表示[名师点睛]与集合元素有关问题的解题策略(1)研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.(2)利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合是否满足元素的互异性.[典例](2022·山东模拟)(1)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4(2)设A=eq\b\lc\{\rc\}(\a\vs4\al\co1(2,3,a2-3a,a+\f(2,a)+7)),B={|a-2|,3},已知4∈A且4∉B,则a的取值集合为________.[解析](1)将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.(2)因为4∈A,即4∈eq\b\lc\{\rc\}(\a\vs4\al\co1(2,3,a2-3a,a+\f(2,a)+7)),所以a2-3a=4或a+eq\f(2,a)+7=4.若a2-3a=4,则a=-1或a=4;若a+eq\f(2,a)+7=4,即a2+3a+2=0,则a=-1或a=-2.由a2-3a与a+eq\f(2,a)+7互异,得a≠-1.故a=-2或a=4.又4∉B,即4∉{|a-2|,3},所以|a-2|≠4,解得a≠-2且a≠6.综上所述,a的取值集合为{4}.[答案](1)A(2){4}[举一反三]1.(2022·江西·新余四中模拟预测(理))已知集合,若,则实数a的取值范围为(
)A.B. C. D.【答案】D【解析】因为,所以,解得.故选:D.2.(2022·菏泽模拟)设a,b∈R,集合{1,a+b,a}=eq\b\lc\{\rc\}(\a\vs4\al\co1(0,\f(b,a),b)),则b-a=()A.1 B.-1C.2 D.-2解析:选C.因为{1,a+b,a}=eq\b\lc\{\rc\}(\a\vs4\al\co1(0,\f(b,a),b)),a≠0,所以a+b=0,则eq\f(b,a)=-1,所以a=-1,b=1.所以b-a=2.3.(多选)(2022·广州一调)已知集合{x|mx2-2x+1=0}={n},则m+n的值可能为()A.0 B.eq\f(1,2)C.1 D.2解析:选BD.因为集合{x|mx2-2x+1=0}={n},所以eq\b\lc\{(\a\vs4\al\co1(m=0,,-2n+1=0))或eq\b\lc\{(\a\vs4\al\co1(m≠0,,Δ=4-4m=0,,n=-\f(-2,2m),))解得eq\b\lc\{(\a\vs4\al\co1(m=0,,n=\f(1,2)))或eq\b\lc\{(\a\vs4\al\co1(m=1,,n=1,))所以m+n=eq\f(1,2)或m+n=2.故选BD.4.(2022·福建·模拟预测)设集合,,则集合元素的个数为(
)A.2 B.3 C.4 D.5【答案】B【解析】当时,y=1;当时,y=0;当x=3时,.故集合B共有3个元素.故选:B.5.(2022·武汉校级月考)已知集合A={m+2,2m2+m},若3∈A,则m的值为________.解析:由题意得m+2=3或2m2+m=3,则m=1或m=-eq\f(3,2).当m=1时,m+2=3且2m2+m=3,根据集合中元素的互异性可知不满足题意;当m=-eq\f(3,2)时,m+2=eq\f(1,2),而2m2+m=3,符合题意,故m=-eq\f(3,2).答案:-eq\f(3,2)考点2集合的基本关系[名师点睛]解决有关集合间的基本关系问题的策略(1)一般利用数轴法、Venn图法以及结构法判断两集合间的关系,如果集合中含有参数,需要对式子进行变形,有时需要进一步对参数分类讨论.(2)确定非空集合A的子集的个数,需先确定集合A中的元素的个数.(3)根据集合间的关系求参数值(或取值范围)的关键是将条件转化为元素满足的式子或区间端点间的关系,常用数轴法、Venn图法.[典例](1)(2021·八省联考)已知M,N均为R的子集,且∁RM⊆N,则M∪(∁RN)=()A.∅ B.MC.N D.R(2)[2022·广东阳江月考]已知集合A={x|y=eq\r(4-x2)},B={x|a≤x≤a+1},若B⊆A,则实数a的取值范围为()A.(-∞,-3]∪[2,+∞) B.[-1,2]C.[-2,1] D.[2,+∞)【解析】(1)因为M,N均为R的子集,且∁RM⊆N,所以N=∁RM,所以M∪(∁RN)=M.故选B.(2)集合A={x|y=eq\r(4-x2)}={x|-2≤x≤2},因为B⊆A,所以有eq\b\lc\{(\a\vs4\al\co1(a≥-2,,a+1≤2,))所以-2≤a≤1.【答案】(1)B(2)C[举一反三]1.(2022·广东广州·一模)已知集合,,则的子集个数为(
)A.2 B.3 C.4 D.6【答案】C【解析】由题可知,所有,所有其子集分别是,所有共有4个子集,故选:C2.[2022·湖北武汉摸底]已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2C.3 D.4解析:选D求解一元二次方程,得A={x|x2-3x+2=0,x∈R}={x|(x-1)(x-2)=0,x∈R}={1,2},易知B={x|0<x<5,x∈N}={1,2,3,4}.因为A⊆C⊆B,所以根据子集的定义,集合C必须含有元素1,2,且可能含有元素3,4,原题即求集合{3,4}的子集个数,即有22=4个,故选D.3.(2022·山东·潍坊一中模拟预测)已知集合M,N是全集U的两个非空子集,且,则(
)A. B. C. D.【答案】A【解析】表示集合的补集,因为,所以.故选:A4.[2021·湖南长沙长郡中学适应性考试]已知集合A={x∈Z|x≥a},集合B={x∈Z|2x≤4}.若A∩B只有4个子集,则实数a的取值范围是()A.(-2,-1] B.[-2,-1]C.[0,1] D.(0,1][答案]D[解析]本题考查根据集合的子集个数求参数的取值.集合A={x∈Z|x≥a},集合B={x∈Z|2x≤4}={x∈Z|x≤2},故A∩B={x∈Z|a≤x≤2}.因为A∩B只有4个子集,所以A∩B中元素只能有2个,即A∩B={1,2},所以0<a≤1,故选D.5.[2022·吉林辽源五校期末联考]已知集合M={x|x-a=0},N={x|ax-1=0},若M∩N=N,则实数a的值是________.解析:由题易得M={a}.因为M∩N=N,所以N⊆M,所以N=∅或N=M,所以a=0或a=±1.答案:0或1或-1考点3集合的基本运算[名师点睛]利用集合的运算求参数的值或取值范围的方法(1)与不等式有关的集合,一般利用数轴解决,要注意端点值能否取到.(2)若集合能一一列举,则一般先用观察法得到不同集合中元素之间的关系,再列方程(组)求解.[典例]1.(1)(2021·全国·高考真题)设集合,则(
)A. B. C. D.【答案】B【解析】由题设可得,故,故选:B.(2)(多选)[2022·湖南长沙模拟]已知全集U=R,集合M={x|-3≤x<4},N={x|x2-2x-8≤0},则()A.M∪N={x|-3≤x<4}B.M∩N={x|-2≤x<4}C.(∁UM)∪N=(-∞,-3)∪[-2,+∞)D.M∩(∁UN)=(-3,-2)【解析】(1)方法一:由题意,得A∪B={-1,0,1,2},所以∁U(A∪B)={-2,3},故选A.方法二:因为2∈B,所以2∈A∪B,所以2∉∁U(A∪B),故排除B,D;又0∈A,所以0∈A∪B,所以0∉∁U(A∪B),故排除C,故选A.(2)由x2-2x-8≤0,得-2≤x≤4,所以N={x|-2≤x≤4},则M∪N={x|-3≤x≤4},A错误;M∩N={x|-2≤x<4},B正确;由于∁UM=(-∞,-3)∪[4,+∞),故(∁UM)∪N=(-∞,-3)∪[-2,+∞),C正确;由于∁UN=(-∞,-2)∪(4,+∞),故M∩(∁UN)=[-3,-2),D错误.故选BC.【答案】(1)A(2)BC2.(1)(2020·高考全国卷Ⅰ)设集合A={x|x2-4≤0},B={x|2x+a≤0},且A∩B={x|-2≤x≤1},则a=()A.-4 B.-2C.2 D.4(2)[2022·湖南六校联考]集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为()A.0 B.1C.2 D.4【解析】(1)方法一:易知A={x|-2≤x≤2},B={x|x≤-eq\f(a,2)},因为A∩B={x|-2≤x≤1},所以-eq\f(a,2)=1,解得a=-2.故选B.方法二:由题意得A={x|-2≤x≤2}.若a=-4,则B={x|x≤2},又A={x|-2≤x≤2},所以A∩B={x|-2≤x≤2},不满足题意,排除A;若a=-2,则B={x|x≤1},又A={x|-2≤x≤2},所以A∩B={x|-2≤x≤1},满足题意;若a=2,则B={x|x≤-1},又A={x|-2≤x≤2},所以A∩B={x|-2≤x≤-1},不满足题意,排除C;若a=4,则B={x|x≤-2},又A={x|-2≤x≤2},所以A∩B={x|x=-2},不满足题意.故选B.(2)根据集合并集的概念,可知{a,a2}={4,16},故a=4.【答案】(1)B(2)D[举一反三]1.(2022·河北石家庄·二模)已知集合,,则(
)A. B. C. D.【答案】D【解析】因为,所以,而,所以,故选:D2.[2022·华南师范大学附属中学月考]已知集合A={x|x<3},B={x|x>a},若A∩B≠∅,则实数a的取值范围为()A.[3,+∞) B.(3,+∞)C.(-∞,3) D.(-∞,3]解析:选C因为A∩B≠∅,所以结合数轴可知实数a的取值范围是a<3,故选C.3.(2020·高考全国卷Ⅲ)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2 B.3C.4 D.6解析:选C.由题意得,A∩B={(1,7),(2,6),(3,5),(4,4)},所以A∩B中元素的个数为4,选C.4.(2022·重庆·二模)已知集合,则下图中阴影部分表示的集合为(
)A. B. C. D.【答案】B【解析】由图可知,图中阴影部分表示,由,得,所以,所以或,因为,所以,故选:B5.(2021·全国·高考真题(理))已知集合,,则(
)A. B. C. D.【答案】C【解析】任取,则,其中,所以,,故,因此,.故选:C.6.[2021·豫北名校联考]设集合A={x|x2+2x-3>0},集合B={x|x2-2ax-1≤0,a>0},若A∩B中恰含有一个整数,则实数a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(3,4))) B.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,4),\f(4,3)))C.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(3,4),+∞)) D.(1,+∞)[答案]B[解析]A={x|x2+2x-3>0}={x|x>1或x<-3},设函数f(x)=x2-2ax-1,因为函数f(x)=x2-2ax-1图象的对称轴为直线x=a(a>0),f(0)=-1<0,根据对称性可知,若A∩B中恰有一个整数,则这个整数为2,所以有eq\b\lc\{\rc\(\a\vs4\al\co1(f2≤0,,f3>0,))即eq\b\lc\{\rc\(\a\vs4\al\co1(4-4a-1≤0,,9-6a-1>0,))所以eq\b\lc\{\rc\(\a\vs4\al\co1(a≥\f(3,4),,a<\f(4,3),))即eq\f(3,4)≤a<eq\f(4,3).故选B.7.(2020·浙江·高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足:①对于任意x,yS,若x≠y,都有xyT②对于任意x,yT,若x<y,则S;下列命题正确的是(
)A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素【答案】A【解析】首先利用排除法:若取,则,此时,包含4个元素,排除选项C;若取,则,此时,包含5个元素,排除选项D;若取,则,此时,包含7个元素,排除选项B;下面来说明选项A的正确性:设集合,且,,则,且,则,同理,,,,,若,则,则,故即,又,故,所以,故,此时,故,矛盾,舍.若,则,故即,又,故,所以,故,此时.若,则,故,故,即,故,此时即中有7个元素.故A正确.故选:A.考点4集合中的创新问题[名师点睛]1.首先分析新定义的特点,把新定义所叙述的问题本质弄清楚,并能够应用到具体的解题过程之中,这是解决新定义型问题的关键所在;2.集合的性质(概念、元素的性质、运算性质等)是解决新定义集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些信息,在关键之处用好集合的性质。[典例]1.(2022·北京房山·一模)已知U是非实数集,若非空集合A1,A2满足以下三个条件,则称(A1,A2)为集合U的一种真分拆,并规定(A1,A2)与(A2,A1)为集合U的同一种真分拆①A1∩A2=0②A1A2=U③的元素个数不是中的元素.则集合U={1,2,3,4,5,6}的真分拆的种数是(
)A.5 B.6 C.10 D.15【答案】A【解析】解:由题意,集合U={1,2,3,4,5,6}的真分拆有;;;;,共5种,故选:A.2.[2022·广东六校联考]已知集合A0={x|0<x<1}.给定一个函数y=f(x),定义集合An={y|y=f(x),x∈An-1},若An∩An-1=∅对任意的x∈N*成立,则称该函数具有性质“∅”.(1)具有性质“∅”的一个一次函数的解析式可以是________.(2)给出下列函数:①y=eq\f(1,x);②y=x2+1;③y=coseq\f(π,2)x+2.其中具有性质“∅”的函数的序号是________.[解析](1)答案不唯一,合理即可.示例:对于解析式y=x+1,因为A0={x|0<x<1},所以A1={x|1<x<2},A2={x|2<x<3},…,显然符合An∩An-1=∅.故具有性质“∅”的一个一次函数的解析式可以是y=x+1.(2)对于①,A0={x|0<x<1},A1={x|x>1},A2={x|0<x<1},…,依次循环下去,符合An∩An-1=∅.对于②,A0={x|0<x<1},A1={x|1<x<2},A2={x|2<x<5},A3={x|5<x<26},…,根据函数y=x2+1的单调性得相邻两个集合不会有交集,符合An∩An-1=∅.对于③,A0={x|0<x<1},A1={x|2<x<3},A2={x|1<x<2},A3={x|1<x<2},不符合An∩An-1=∅.所以具有性质“∅”的函数的序号是①②.[答案](1)y=x+1(2)①②3.[2022·河北保定质检]现有100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么对既带感冒药又带胃药的人数统计中,下列说法正确的是()A.最多人数是55 B.最少人数是55C.最少人数是75 D.最多人数是80解析:选B设100名携带药品出国的旅游者组成全集I,其中带感冒药的人组成集合A,带胃药的人组成集合B.设所携带药品既非感冒药又非胃药的人数为x,则0≤x≤20.设以上两种药都带的人数为y.由图可知,x+card(A)+card(B)-y=100.∴x+75+80-y=100,∴y=55+x.∵0≤x≤20,∴55≤y≤75,故最少人数是55.[举一反三]1.(2022·湖南·雅礼中学一模)已知集合,,定义集合,则中元素的个数为A.77 B.49 C.45 D.30【答案】C【解析】因为集合,所以集合中有5个元素(即5个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.2.[2021·四川成都联考]已知集合A={1,2,3,4,5,6}的所有三个元素的子集记为B1,B2,B3,…,Bk,k∈N*.记bi为集合Bi(i=1,2,3,…,k)中的最大元素,则b1+b2+b3+…+bk=()A.45 B.105C.150 D.210[答案]B[解析]本题考查集合的新定义问题.集合A的含有3个元素的子集共有Ceq\o\al(3,6)=20个,所以k=20.在集合Bi(i=1,2,3,…,k)中,最大元素为3的集合有Ceq\o\al(2,2)=1个;最大元素为4的集合有Ceq\o\al(2,3)=3个;最大元素为5的集合有Ceq\o\al(2,4)=6个;最大元素为6的集合有Ceq\o\al(2,5)=10个,所以b1+b2+b3+…+bk=3×1+4×3+5×6+6×10=105.故选B.3.[多选][2022·湘赣皖十五
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程施工合同关键点解读
- 快递业务承接合同书格式
- 仓储保管协议范文
- 临时工用工协议范本
- 店铺买卖协议书样本
- 个人股权合作协议书模板
- 员工协议书模板2024年
- 旧变压器买卖合同撰写指南
- 农村个人土地承包合同书编写指南
- 技术咨询服务合同书格式模板
- 市政工程资料表格填写范例样本
- 新生儿输血完整版本
- 电脑耗材实施方案、供货方案、售后服务方案
- 2024年深圳市地铁集团有限公司招聘笔试参考题库附带答案详解
- (高清版)DZT 0432-2023 煤炭与煤层气矿产综合勘查规范
- 新能源汽车行业技术发展趋势分析报告
- 《干部监督有关知识》课件
- 扩建办公楼项目可行性研究报告
- 大学生职业生涯发展规划智慧树知到期末考试答案2024年
- b方太营销组织岗位角色与职责设计
- 送教上门教师培训课件
评论
0/150
提交评论