浙江省宁波市2021-2022学年高三第三次测评数学试卷含解析_第1页
浙江省宁波市2021-2022学年高三第三次测评数学试卷含解析_第2页
浙江省宁波市2021-2022学年高三第三次测评数学试卷含解析_第3页
浙江省宁波市2021-2022学年高三第三次测评数学试卷含解析_第4页
浙江省宁波市2021-2022学年高三第三次测评数学试卷含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.祖暅原理:“幂势既同,则积不容异”.意思是说:两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设、为两个同高的几何体,、的体积不相等,、在等高处的截面积不恒相等.根据祖暅原理可知,是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-23.已知函数,则不等式的解集为()A. B. C. D.4.正三棱锥底面边长为3,侧棱与底面成角,则正三棱锥的外接球的体积为()A. B. C. D.5.已知双曲线:,,为其左、右焦点,直线过右焦点,与双曲线的右支交于,两点,且点在轴上方,若,则直线的斜率为()A. B. C. D.6.已知集合,则集合真子集的个数为()A.3 B.4 C.7 D.87.下列命题为真命题的个数是()(其中,为无理数)①;②;③.A.0 B.1 C.2 D.38.已知数列的首项,且,其中,,,下列叙述正确的是()A.若是等差数列,则一定有 B.若是等比数列,则一定有C.若不是等差数列,则一定有 D.若不是等比数列,则一定有9.下列函数中,在区间上为减函数的是()A. B. C. D.10.若集合,,则=()A. B. C. D.11.已知数列对任意的有成立,若,则等于()A. B. C. D.12.在平行六面体中,M为与的交点,若,,则与相等的向量是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,满足,,,则向量在的夹角为______.14.若非零向量,满足,,,则______.15.某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.16.若,则=______,=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:(Ⅰ)试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;(Ⅱ)从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;(Ⅲ)为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18.(12分)在一次电视节目的答题游戏中,题型为选择题,只有“A”和“B”两种结果,其中某选手选择正确的概率为p,选择错误的概率为q,若选择正确则加1分,选择错误则减1分,现记“该选手答完n道题后总得分为”.(1)当时,记,求的分布列及数学期望;(2)当,时,求且的概率.19.(12分)已知数列的通项,数列为等比数列,且,,成等差数列.(1)求数列的通项;(2)设,求数列的前项和.20.(12分)随着电子阅读的普及,传统纸质媒体遭受到了强烈的冲击.某杂志社近9年来的纸质广告收入如下表所示:根据这9年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.243;根据后5年的数据,对和作线性相关性检验,求得样本相关系数的绝对值为0.984.(1)如果要用线性回归方程预测该杂志社2019年的纸质广告收入,现在有两个方案,方案一:选取这9年数据进行预测,方案二:选取后5年数据进行预测.从实际生活背景以及线性相关性检验的角度分析,你觉得哪个方案更合适?附:相关性检验的临界值表:(2)某购物网站同时销售某本畅销书籍的纸质版本和电子书,据统计,在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,现用此统计结果作为概率,若从上述读者中随机调查了3位,求购买电子书人数多于只购买纸质版本人数的概率.21.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.22.(10分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】

由题意分别判断命题的充分性与必要性,可得答案.【详解】解:由题意,若、的体积不相等,则、在等高处的截面积不恒相等,充分性成立;反之,、在等高处的截面积不恒相等,但、的体积可能相等,例如是一个正放的正四面体,一个倒放的正四面体,必要性不成立,所以是的充分不必要条件,故选:A.【点睛】本题主要考查充分条件、必要条件的判定,意在考查学生的逻辑推理能力.2.C【解析】

利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.3.D【解析】

先判断函数的奇偶性和单调性,得到,且,解不等式得解.【详解】由题得函数的定义域为.因为,所以为上的偶函数,因为函数都是在上单调递减.所以函数在上单调递减.因为,所以,且,解得.故选:D【点睛】本题主要考查函数的奇偶性和单调性的判断,考查函数的奇偶性和单调性的应用,意在考查学生对这些知识的理解掌握水平.4.D【解析】

由侧棱与底面所成角及底面边长求得正棱锥的高,再利用勾股定理求得球半径后可得球体积.【详解】如图,正三棱锥中,是底面的中心,则是正棱锥的高,是侧棱与底面所成的角,即=60°,由底面边长为3得,∴.正三棱锥外接球球心必在上,设球半径为,则由得,解得,∴.故选:D.【点睛】本题考查球体积,考查正三棱锥与外接球的关系.掌握正棱锥性质是解题关键.5.D【解析】

由|AF2|=3|BF2|,可得.设直线l的方程x=my+,m>0,设,,即y1=﹣3y2①,联立直线l与曲线C,得y1+y2=-②,y1y2=③,求出m的值即可求出直线的斜率.【详解】双曲线C:,F1,F2为左、右焦点,则F2(,0),设直线l的方程x=my+,m>0,∵双曲线的渐近线方程为x=±2y,∴m≠±2,设A(x1,y1),B(x2,y2),且y1>0,由|AF2|=3|BF2|,∴,∴y1=﹣3y2①由,得∴△=(2m)2﹣4(m2﹣4)>0,即m2+4>0恒成立,∴y1+y2=②,y1y2=③,联立①②得,联立①③得,,即:,,解得:,直线的斜率为,故选D.【点睛】本题考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,属于中档题.6.C【解析】

解出集合,再由含有个元素的集合,其真子集的个数为个可得答案.【详解】解:由,得所以集合的真子集个数为个.故选:C【点睛】此题考查利用集合子集个数判断集合元素个数的应用,含有个元素的集合,其真子集的个数为个,属于基础题.7.C【解析】

对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于③中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【详解】由题意,对于①中,由,可得,根据不等式的性质,可得成立,所以是正确的;对于②中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以②不正确;对于③中,设函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.8.C【解析】

根据等差数列和等比数列的定义进行判断即可.【详解】A:当时,,显然符合是等差数列,但是此时不成立,故本说法不正确;B:当时,,显然符合是等比数列,但是此时不成立,故本说法不正确;C:当时,因此有常数,因此是等差数列,因此当不是等差数列时,一定有,故本说法正确;D:当时,若时,显然数列是等比数列,故本说法不正确.故选:C【点睛】本题考查了等差数列和等比数列的定义,考查了推理论证能力,属于基础题.9.C【解析】

利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.10.C【解析】试题分析:化简集合故选C.考点:集合的运算.11.B【解析】

观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.12.D【解析】

根据空间向量的线性运算,用作基底表示即可得解.【详解】根据空间向量的线性运算可知因为,,则即,故选:D.【点睛】本题考查了空间向量的线性运算,用基底表示向量,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

把平方利用数量积的运算化简即得解.【详解】因为,,,所以,∴,∴,因为所以.故答案为:【点睛】本题主要考查平面向量的数量积的运算法则,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.14.1【解析】

根据向量的模长公式以及数量积公式,得出,解方程即可得出答案.【详解】,即解得或(舍)故答案为:【点睛】本题主要考查了向量的数量积公式以及模长公式的应用,属于中档题.15.36010【解析】

列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.16.10【解析】

①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【详解】①由题:,则;②由①可得:.故答案为:①1,②0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)万;(Ⅱ)分布列见解析,;(Ⅲ)【解析】

(Ⅰ)根据比例关系直接计算得到答案.(Ⅱ)的可能取值为,计算概率得到分布列,再计算数学期望得到答案.(Ⅲ)英语测试成绩在70分以上的概率为,故,解得答案.【详解】(Ⅰ)样本中女生英语成绩在分以上的有人,故人数为:万人.(Ⅱ)8名男生中,测试成绩在70分以上的有人,的可能取值为:.,,.故分布列为:.(Ⅲ)英语测试成绩在70分以上的概率为,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18.(1)见解析,0(2)【解析】

(1)即该选手答完3道题后总得分,可能出现的情况为3道题都答对,答对2道答错1道,答对1道答错2道,3道题都答错,进而求解即可;(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又,则第一题答对,第二题第三题至少有一道答对,进而求解.【详解】解:(1)的取值可能为,,1,3,又因为,故,,,,所以的分布列为:13所以(2)当时,即答完8题后,正确的题数为5题,错误的题数是3题,又已知,第一题答对,若第二题回答正确,则其余6题可任意答对3题;若第二题回答错误,第三题回答正确,则后5题可任意答对题,此时的概率为(或).【点睛】本题考查二项分布的分布列及期望,考查数据处理能力,考查分类讨论思想.19.(1);(2).【解析】

(1)根据,,成等差数列以及为等比数列,通过直接对进行赋值计算出的首项和公比,即可求解出的通项公式;(2)的通项公式符合等差乘以等比的形式,采用错位相减法进行求和.【详解】(1)数列为等比数列,且,,成等差数列.设数列的公比为,,,解得(2),,,,.【点睛】本题考查等差、等比数列的综合以及错位相减法求和的应用,难度一般.判断是否适合使用错位相减法,可根据数列的通项公式是否符合等差乘以等比的形式来判断.20.(1)选取方案二更合适;(2)【解析】

(1)可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据,而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系,从而可得结论;(2)求得购买电子书的概率为,只购买纸质书的概率为,购买电子书人数多于只购买纸质书人数有两种情况:3人购买电子书,2人购买电子书一人只购买纸质书,由此能求出购买电子书人数多于只购买纸质版本人数的概率.【详解】(1)选取方案二更合适,理由如下:①题中介绍了,随着电子阅读的普及,传统纸媒受到了强烈的冲击,从表格中的数据中可以看出从2014年开始,广告收入呈现逐年下降的趋势,可以预见,2019年的纸质广告收入会接着下跌,前四年的增长趋势已经不能作为预测后续数据的依据.②相关系数越接近1,线性相关性越强,因为根据9年的数据得到的相关系数的绝对值,我们没有理由认为与具有线性相关关系;而后5年的数据得到的相关系数的绝对值,所以有的把握认为与具有线性相关关系.(2)因为在该网站购买该书籍的大量读者中,只购买电子书的读者比例为,纸质版本和电子书同时购买的读者比例为,所以从该网站购买该书籍的大量读者中任取一位,购买电子书的概率为,只购买纸质书的概率为,购买电子书人数多于只购买

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论