云南省2022-2023学年九年级数学上册期末调研模拟试题含解析_第1页
云南省2022-2023学年九年级数学上册期末调研模拟试题含解析_第2页
云南省2022-2023学年九年级数学上册期末调研模拟试题含解析_第3页
云南省2022-2023学年九年级数学上册期末调研模拟试题含解析_第4页
云南省2022-2023学年九年级数学上册期末调研模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.C.9D.2.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇3.对于反比例函数,下列说法不正确的是()A.图像分布在第一、三象限 B.当时,随的增大而减小C.图像经过点 D.若点都在图像上,且,则4.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<45.下列四个几何体中,主视图是三角形的是()A. B. C. D.6.一元二次方程的根的情况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根7.在相同的时刻,太阳光下物高与影长成正比.如果高为1.5米的人的影长为2.5米,那么影长为30米的旗杆的高是().A.18米

B.16米

C.20米

D.15米8.不等式的解为()A. B. C. D.9.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.10.下列说法:①概率为0的事件不一定是不可能事件;②试验次数越多,某情况发生的频率越接近概率;③事件发生的概率与实验次数无关;④在抛掷图钉的试验中针尖朝上的概率为,表示3次这样的试验必有1次针尖朝上.其中正确的是()A.①② B.②③ C.①③ D.①④11.(2011•陕西)下面四个几何体中,同一个几何体的主视图和俯视图相同的共有()A、1个 B、2个C、3个 D、4个12.如图所示,抛物线y=ax²+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列5个结论中,其中正确的是()①abc>0;②4a+c>0;③方程ax²+bx+c=3两个根是=0,=2;④方程ax²+bx+c=0有一个实数根大于2;⑤当x<0,y随x增大而增大A.4 B.3 C.2 D.1二、填空题(每题4分,共24分)13.如图,在平面直角坐标系中,将边长为1的正方形绕点逆时针旋转45°后得到正方形,继续旋转至2020次得到正方形,那点的坐标是__________.14.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为_______.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是_____.17.如图,量角器的0度刻度线为,将一矩形直角与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,量得,点在量角器上的度数为60°,则该直尺的宽度为_________________.18.如图,已知AB是半圆O的直径,∠BAC=20°,D是弧AC上任意一点,则∠D的度数是_________.三、解答题(共78分)19.(8分)随着科学技术的不断进步,草莓的品种越来越多样化,某基地农户计划尝试购进牛奶草莓和巧克力草莓新品种共5000株,其中牛奶草莓成本每株5元,巧克力草莓成本每株8元.(1)由于初次尝试该品种草莓种植,农户购进两种草莓品种的金额不得超过34000元,则牛奶草莓植株至少购进多少株?(2)农户按(1)中牛奶草莓的最少进货量购进牛奶草莓巧克力草莓植株,经过几个月的精心培育,可收获草莓共计2500千克,农户在培育过程中共花费25000元.农户计划采用直接出售与生态采摘出售两种方式进行售卖,其中直接出售牛奶草莓的售价为每千克30元,直接出售巧克力草莓的售价为每千克40元,且两种草莓各出售了500千克.而生态采摘出售时,两种品种幕莓的采摘销售价格一样,且通过生态采摘把余下的草莓全部销售完,但采摘过程中会有0.6a%的损耗,其中生态采摘出售草莓的单价比直接出售巧克力草莓的单价还高3a%(0<a≤75),这样该农户经营草莓的总利润为65250元,求a的值.20.(8分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:收集数据:七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.整理数据:40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100七年级010a71八年级1007b2分析数据:平均数众数中位数七年级7875c八年级78d80.5应用数据:(1)由上表填空:a=;b=;c=;d=.(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.21.(8分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长.22.(10分)如图,在平面直角坐标系中,双曲线和直线y=kx+b交于A,B两点,点A的坐标为(﹣3,2),BC⊥y轴于点C,且OC=6BC.(1)求双曲线和直线的解析式;(2)直接写出不等式的解集.23.(10分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.24.(10分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)25.(12分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率26.有红、黄两个盒子,红盒子中藏有三张分别标有数字,,1的卡片,黄盒子中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现甲从红盒子中取出一张卡片,乙从黄盒子中取出一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得二次函数y=ax2+bx+1的图像与x轴有两个不同的交点,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.

参考答案一、选择题(每题4分,共48分)1、C【解析】试题分析:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=12AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2考点:切线的性质;最值问题.2、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【分析】根据反比例函数图象的性质对各选项分析判断后即可求解.【详解】解:A、k=8>0,∴它的图象在第一、三象限,故本选项正确,不符合题意;B、k=8>0,当x>0时,y随x的增大而减小,故本选项正确,不符合题意;C、∵,∴点(-4,-2)在它的图象上,故本选项正确,不符合题意;D、点A(x1,y1)、B(x2、y2)都在反比例函数的图象上,若x1<x2<0,则y1>y2,故本选项错误,符合题意.故选D.【点睛】本题考查了反比例函数的性质,对于反比例函数,(1)k>0,反比例函数图象在一、三象限,在每一个象限内,y随x的增大而减小;(2)k<0,反比例函数图象在第二、四象限内,在每一个象限内,y随x的增大而增大.4、C【解析】根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5、B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.6、D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】∵△=62-4×(-1)×(-10)=36-40=-4<0,

∴方程没有实数根.

故选D.【点睛】此题考查一元二次方程的根的判别式,解题关键在于掌握方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7、A【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【详解】根据题意解:标杆的高:标杆的影长=旗杆的高:旗杆的影长,即1.5:2.5=旗杆的高:30,∴旗杆的高==18米.故选:A.【点睛】考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,求解即可得出旗杆的高.8、B【分析】根据一元一次不等式的解法进行求解即可.【详解】解:移项得,,合并得,,系数化为1得,.故选:B.【点睛】本题考查一元一次不等式的解法,属于基础题型,明确解法是关键.9、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、B【分析】根据概率和频率的概念对各选项逐一分析即可.【详解】①概率为0的事件是不可能事件,①错误;②试验次数越多,某情况发生的频率越接近概率,故②正确;③事件发生的概率是客观存在的,是确定的数值,故③正确;④根据概率的概念,④错误.故选:B【点睛】本题考查概率的意义,考查频率与概率的关系,本题是一个概念辨析问题.11、B【解析】圆柱主视图、俯视图分别是长方形、圆,主视图与俯视图不相同;圆锥主视图、俯视图分别是三角形、有圆心的圆,主视图与俯视图不相同;球主视图、俯视图都是圆,主视图与俯视图相同;正方体主视图、俯视图都是正方形,主视图与俯视图相同.共2个同一个几何体的主视图与俯视图相同.故选B.12、B【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】抛物线开口向下,a<0,对称轴为直线x=1>0,a、b异号,因此b>0,与y轴交点为(0,3),因此c=3>0,于是abc<0,故结论①是不正确的;由对称轴为直线x=−=1得2a+b=0,当x=−1时,y=a−b+c<0,所以a+2a+c<0,即3a+c<0,又a<0,4a+c<0,故结论②不正确;当y=3时,x1=0,即过(0,3),抛物线的对称轴为直线x=1,由对称性可得,抛物线过(2,3),因此方程ax2+bx+c=3的有两个根是x1=0,x2=2;故③正确;抛物线与x轴的一个交点(x1,0),且−1<x1<0,由对称轴为直线x=1,可得另一个交点(x2,0),2<x2<3,因此④是正确的;根据图象可得当x<0时,y随x增大而增大,因此⑤是正确的;正确的结论有3个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.二、填空题(每题4分,共24分)13、(-1,-1)【分析】连接OB,根据图形可知,点B在以点O为圆心、、OB为半径的圆上运用,将正方形OABC绕点O逆时针依次旋转45°,可得点B的对应点坐标,根据图形及对应点的坐标发现是8次一个循环,进而得出结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理可得,由旋转的性质得:将正方形OABC绕点O逆时针依次旋转45°,得:,∴,,,,…,可发现8次一循环,∵,∴点的坐标为,故答案为.【点睛】本题考查了几何图形的规律探究,根据计算得出“8次一个循环”是解题的关键.14、【解析】试题分析:列表得:

黑1

黑2

白1

白2

黑1

黑1黑1

黑1黑2

黑1白1

黑1白2

黑2

黑2黑1

黑2黑2

黑2白1

黑2白2

白1

白1黑1

白1黑2

白1白1

白1白2

白2

白2黑1

白2黑2

白2白1

白2白2

共有16种等可能结果总数,其中两次摸出是白球有4种.∴P(两次摸出是白球)=.考点:概率.15、1.【解析】∵,由勾股定理逆定理可知此三角形为直角三角形,∴它的内切圆半径,16、【分析】连接AC、BD,根据菱形的面积公式,得S菱形ABCD=,进而得矩形A1B1C1D1的面积,菱形A2B2C2D2的面积,以此类推,即可得到答案.【详解】连接AC、BD,则AC⊥BD,∵菱形ABCD中,边长为1,∠A=60°,∴S菱形ABCD=AC∙BD=1×1×sin60°=,∵顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1,∴四边形A1B1C1D1是矩形,∴矩形A1B1C1D1的面积=AC∙BD=AC∙BD=S菱形ABCD==,菱形A2B2C2D2的面积=×矩形A1B1C1D1的面积=S菱形ABCD==,……,∴四边形A2019B2019C2019D2019的面积=,故答案为:.【点睛】本题主要考查菱形得性质和矩形的性质,掌握菱形的面积公式,是解题的关键.17、【分析】连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.18、110°【解析】试题解析:∵AB是半圆O的直径故答案为点睛:圆内接四边形的对角互补.三、解答题(共78分)19、(1)牛奶草莓植株至少购进2株;(2)a的值为1.【分析】(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据总价=单价×数量结合购进两种草莓品种的金额不得超过34000元,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据利润=销售收入﹣成本﹣消耗,即可得出关于a的一元二次方程,利用换元法解一元二次方程即可求出a值,取其小于等于75的值即可得出结论.【详解】解:(1)设购进牛奶草莓植株x株,则购进巧克力草莓植株(5000﹣x)株,根据题意得:5x+8(5000﹣x)≤34000,解得:x≥2.答:牛奶草莓植株至少购进2株.(2)根据题意得:500×(30+40)+(100﹣500﹣500)(1﹣0.6a%)×40(1+3a%)﹣1000﹣34000=6510,令m=a%,则原方程可整理得:48m2﹣64m+13=0,解得:m1=,m2=,∴a1=×100=1,a2=×100=,∵0<a≤75,∴a1=1,a2=(不合题意,舍去).答:a的值为1.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用,根据题意正确列出不等式和方程是解答本题的关键.20、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【分析】(1)根据已知数据及中位数和众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)答案不唯一,合理均可.【详解】解:(1)由题意知a=11,b=10,将七年级成绩重新排列为:59,70,72,73,75,75,75,76,1,1,78,79,80,80,81,83,85,86,87,94,∴其中位数c==78.5,八年级成绩的众数d=81,故答案为:11,10,78.5,81;(2)由样本数据可得,七年级得分在80分及以上的占=,故七年级得分在80分及以上的大约600×=240人;八年级得分在80分及以上的占=,故八年级得分在80分及以上的大约600×=360人.故共有600人.(3)该校八年级学生对急救知识掌握的总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).【点睛】本题考查了众数、中位数以及平均数,掌握众数、中位数以及平均数的定义是解题的关键.21、原菜地长为.【分析】设原菜地的长为,根据正方形的性质可得原矩形菜地的宽,再根据矩形的面积公式列出方程求解即可.【详解】设原菜地的长为,则原矩形菜地的宽由题意得:解得:,(不合题意,舍去)答:原菜地的长为.【点睛】本题考查了一元二次方程的实际应用,依据题意正确建立方程是解题关键.22、(1)双曲线的解析式为,直线的解析式为y=﹣2x﹣4;(2)﹣3<x<0或x>1.【分析】(1)将A坐标代入反比例解析式中求出m的值,确定出反比例解析式,根据OC=6BC,且B在反比例图象上,设B坐标为(a,﹣6a),代入反比例解析式中求出a的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)根据一次函数与反比例函数的两交点A与B的横坐标,以及0,将x轴分为四个范围,找出反比例图象在一次函数图象上方时x的范围即可.【详解】(1)∵点A(﹣3,2)在双曲线上,∴,解得m=﹣6,∴双曲线的解析式为,∵点B在双曲线上,且OC=6BC,设点B的坐标为(a,﹣6a),∴,解得:a=±1(负值舍去),∴点B的坐标为(1,﹣6),∵直线y=kx+b过点A,B,∴,解得:,∴直线的解析式为y=﹣2x﹣4;(2)根据图象得:不等式的解集为﹣3<x<0或x>1.23、(1);(2).【分析】(1)共四种垃圾,厨余垃圾一种,所以甲拿了一袋垃圾恰好厨余垃圾的概率为:;(2)直接画出树状图,利用树状图解题即可【详解】解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论