2022年山东省东营市利津县一中高考数学三模试卷含解析_第1页
2022年山东省东营市利津县一中高考数学三模试卷含解析_第2页
2022年山东省东营市利津县一中高考数学三模试卷含解析_第3页
2022年山东省东营市利津县一中高考数学三模试卷含解析_第4页
2022年山东省东营市利津县一中高考数学三模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合M={1,3},N={1,3,5},则满足M∪X=N的集合X的个数为()A.1 B.2C.3 D.42.函数,,的部分图象如图所示,则函数表达式为()A. B.C. D.3.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④4.“完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为()A. B. C. D.5.已知,,,若,则()A. B. C. D.6.数列{an},满足对任意的n∈N+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列{an}的前100项的和S100=()A.132 B.299 C.68 D.997.已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的()条件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要8.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.9.如图所示,矩形的对角线相交于点,为的中点,若,则等于().A. B. C. D.10.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.11.是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.复数(为虚数单位),则等于()A.3 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.记为数列的前项和.若,则______.14.已知的展开式中项的系数与项的系数分别为135与,则展开式所有项系数之和为______.15.图(1)是第七届国际数学教育大会(ICME-7)的会徽图案,它是由一串直角三角形演化而成的(如图(2)),其中,则的值是______.16.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在斜三棱柱中,已知为正三角形,D,E分别是,的中点,平面平面,.(1)求证:平面;(2)求证:平面.18.(12分)在四棱锥的底面中,,,平面,是的中点,且(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.19.(12分)已知满足,且,求的值及的面积.(从①,②,③这三个条件中选一个,补充到上面问题中,并完成解答.)20.(12分)已知是等差数列,满足,,数列满足,,且是等比数列.(1)求数列和的通项公式;(2)求数列的前项和.21.(12分)某公司打算引进一台设备使用一年,现有甲、乙两种设备可供选择.甲设备每台10000元,乙设备每台9000元.此外设备使用期间还需维修,对于每台设备,一年间三次及三次以内免费维修,三次以外的维修费用均为每次1000元.该公司统计了曾使用过的甲、乙各50台设备在一年间的维修次数,得到下面的频数分布表,以这两种设备分别在50台中的维修次数频率代替维修次数发生的概率.维修次数23456甲设备5103050乙设备05151515(1)设甲、乙两种设备每台购买和一年间维修的花费总额分别为和,求和的分布列;(2)若以数学期望为决策依据,希望设备购买和一年间维修的花费总额尽量低,且维修次数尽量少,则需要购买哪种设备?请说明理由.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数).以原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系.(1)设直线l的极坐标方程为,若直线l与曲线C交于两点A.B,求AB的长;(2)设M、N是曲线C上的两点,若,求面积的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】可以是共4个,选D.2.A【解析】

根据图像的最值求出,由周期求出,可得,再代入特殊点求出,化简即得所求.【详解】由图像知,,,解得,因为函数过点,所以,,即,解得,因为,所以,.故选:A【点睛】本题考查根据图像求正弦型函数的解析式,三角函数诱导公式,属于基础题.3.C【解析】

分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.4.C【解析】

先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则基本事件总数为,则6和28恰好在同一组包含的基本事件个数,∴6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.5.B【解析】

由平行求出参数,再由数量积的坐标运算计算.【详解】由,得,则,,,所以.故选:B.【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键.6.B【解析】

由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.7.B【解析】

根据充分必要条件的概念进行判断.【详解】对于充分性:若,则可以平行,相交,异面,故充分性不成立;若,则可得,必要性成立.故选:B【点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.8.C【解析】

根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.9.A【解析】

由平面向量基本定理,化简得,所以,即可求解,得到答案.【详解】由平面向量基本定理,化简,所以,即,故选A.【点睛】本题主要考查了平面向量基本定理的应用,其中解答熟记平面向量的基本定理,化简得到是解答的关键,着重考查了运算与求解能力,数基础题.10.D【解析】

如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.11.A【解析】

设成立;反之,满足,但,故选A.12.D【解析】

利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,,故选:D.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.二、填空题:本题共4小题,每小题5分,共20分。13.1【解析】

由已知数列递推式可得数列是以16为首项,以为公比的等比数列,再由等比数列的前项和公式求解.【详解】由,得,.且,则,即.数列是以16为首项,以为公比的等比数列,则.故答案为:1.【点睛】本题主要考查数列递推式,考查等比数列的前项和,意在考查学生对这些知识的理解掌握水平.14.64【解析】

由题意先求得的值,再令求出展开式中所有项的系数和.【详解】的展开式中项的系数与项的系数分别为135与,,,由两式可组成方程组,解得或,令,求得展开式中所有的系数之和为.故答案为:64【点睛】本题考查了二项式定理,考查了赋值法求多项式展开式的系数和,属于基础题.15.【解析】

先求出向量和夹角的余弦值,再由公式即得.【详解】如图,过点作的平行线交于点,那么向量和夹角为,,,,,且是直角三角形,,同理得,,.故答案为:【点睛】本题主要考查平面向量数量积,解题关键是找到向量和的夹角.16.60【解析】

根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)见解析【解析】

(1)根据,分别是,的中点,即可证明,从而可证平面;(2)先根据为正三角形,且D是的中点,证出,再根据平面平面,得到平面,从而得到,结合,即可得证.【详解】(1)∵,分别是,的中点∴∵平面,平面∴平面.(2)∵为正三角形,且D是的中点∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【点睛】本题考查直线与平面平行的判定,面面垂直的性质等,解题时要认真审题,注意空间思维能力的培养,中档题.18.(Ⅰ)详见解析;(Ⅱ);(Ⅲ)存在,点为线段的中点.【解析】

(Ⅰ)连结,,,则四边形为平行四边形,得到证明.(Ⅱ)建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.(Ⅲ)设,计算,,根据垂直关系得到答案.【详解】(Ⅰ)连结,,,则四边形为平行四边形.平面.(Ⅱ)平面,四边形为正方形.所以,,两两垂直,建立如图所示坐标系,则,,,,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.(Ⅲ)线段上存在点使得,设,,,,所以点为线段的中点.【点睛】本题考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.19.见解析【解析】

选择①时:,,计算,根据正弦定理得到,计算面积得到答案;选择②时,,,故,为钝角,故无解;选择③时,,根据正弦定理解得,,根据正弦定理得到,计算面积得到答案.【详解】选择①时:,,故.根据正弦定理:,故,故.选择②时,,,故,为钝角,故无解.选择③时,,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【点睛】本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力.20.(1),;(2)【解析】试题分析:(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.试题解析:(Ⅰ)设等差数列{an}的公差为d,由题意得d===1.∴an=a1+(n﹣1)d=1n设等比数列{bn﹣an}的公比为q,则q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵数列{1n}的前n项和为n(n+1),数列{2n﹣1}的前n项和为1×=2n﹣1,∴数列{bn}的前n项和为;考点:1.等差数列性质的综合应用;2.等比数列性质的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论