版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,是的切线,切点分别是.若,则的长是()A.2 B.4 C.6 D.82.如图,在矩形ABCD中,AB=12,P是AB上一点,将△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,则下列结论,其中正确的结论有()①BP=BF;②若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE•EF=1.A.2个 B.3个 C.4个 D.5个3.已知⊙O的半径为3cm,P到圆心O的距离为4cm,则点P在⊙O()A.内部 B.外部 C.圆上 D.不能确定4.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.55.二次函数()的大致图象如图所示,顶点坐标为,点是该抛物线上一点,若点是抛物线上任意一点,有下列结论:①;②若,则;③若,则;④若方程有两个实数根和,且,则.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个6.下列各组图形中,两个图形不一定是相似形的是()A.两个等边三角形 B.有一个角是的两个等腰三角形C.两个矩形 D.两个正方形7.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况.则下列事件为随机事件的是()A.点数之和等于1 B.点数之和等于9C.点数之和大于1 D.点数之和大于128.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是()A.5 B.4 C.3 D.29.服装店将进价为每件100元的服装按每件x(x>100)元出售,每天可销售(200﹣x)件,若想获得最大利润,则x应定为()A.150元 B.160元 C.170元 D.180元10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:x
…
﹣3
﹣2
﹣1
0
1
…
y
…
﹣6
0
4
6
6
…
给出下列说法:①抛物线与y轴的交点为(0,6);②抛物线的对称轴在y轴的左侧;③抛物线一定经过(3,0)点;④在对称轴左侧y随x的增大而减增大.从表中可知,其中正确的个数为()A.4 B.3 C.2 D.1二、填空题(每小题3分,共24分)11.如图,在正方体的展开图形中,要将﹣1,﹣2,﹣3填入剩下的三个空白处(彼此不同),则正方体三组相对的两个面中数字互为相反数的概率是______.12.如图,是反比例函数的图象上一点,过点作轴交反比例函数的图象于点,已知的面积为,则的值为___________.13.如图,一次函数与的图象交于点,则关于的不等式的解集为______.14.若函数是二次函数,则的值为__________.15.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.16.已知二次函数的图象如图所示,并且关于的一元二次方:有两个不相等的实数根,下列结论:①;②;③;④,其中正确的有__________.17.已知,那么=______.18.已知一元二次方程ax2+bx+c=0的两根为﹣5和3,则二次函数y=ax2+bx+c图象对称轴是直线_____.三、解答题(共66分)19.(10分)已知关于x的方程x2-(2k-1)x+k2-2k+3=0有两个不相等的实数根.(1)求实数k的取值范围.(2)设方程的两个实数根分别为x1,x2,是否存在这样的实数k,使得|x1|-|x2|=成立?若存在,求出这样的k值;若不存在,请说明理由.20.(6分)小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B.这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由.21.(6分)已知y是x的反比例函数,且当时,.(1)求y关于x的函数解析式;(2)当时,求y的值.22.(8分)如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=,BC=12,求△ABC的面积.23.(8分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积24.(8分)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:,,,,(理解应用)请你利用以上信息求下列各式的值:(1);(2)(拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)25.(10分)如图,折叠边长为的正方形,使点落在边上的点处(不与点,重合),点落在点处,折痕分别与边、交于点、,与边交于点.证明:(1);(2)若为中点,则;(3)的周长为.26.(10分)如图,二次函数y=x2+bx+c的图象过点B(0,1)和C(4,3)两点,与x轴交于点D、点E,过点B和点C的直线与x轴交于点A.(1)求二次函数的解析式;(2)在x轴上有一动点P,随着点P的移动,存在点P使△PBC是直角三角形,请你求出点P的坐标;(3)若动点P从A点出发,在x轴上沿x轴正方向以每秒2个单位的速度运动,同时动点Q也从A点出发,以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,直接写出a的值;若不存在,说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【分析】因为AB、AC、BD是的切线,切点分别是P、C、D,所以AP=AC、BD=BP,所以.【详解】解:∵是的切线,切点分别是.∴,∴,∵,∴.故选D.【点睛】本题考查圆的切线的性质,解题的关键是掌握切线长定理.2、C【分析】①根据折叠的性质∠PGC=∠PBC=90°,∠BPC=∠GPC,从而证明BE⊥CG可得BE∥PG,推出∠BPF=∠BFP,即可得到BP=BF;②利用矩形ABCD的性质得出AE=DE,即可利用条件证明△ABE≌△DCE;③先根据题意证明△ABE∽△DEC,再利用对应边成比例求出DE即可;④根据勾股定理和折叠的性质得出△ECF∽△GCP,再利用对应边成比例求出BP,即可算出sin值;⑤连接FG,先证明▱BPGF是菱形,再根据菱形的性质得出△GEF∽△EAB,再利用对应边成比例求出BE·EF.【详解】①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;故①正确;②在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16;故③正确;④由③知:CE=,BE=,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,∴sin∠PCB=;故④不正确;⑤如图,连接FG,由①知BF∥PG,∵BF=PG=PB,∴▱BPGF是菱形,∴BP∥GF,FG=PB=9,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=1;故⑤正确,所以本题正确的有①②③⑤,4个,故选:C.【点睛】本题考查矩形与相似的结合、折叠的性质,关键在于通过基础知识证明出所需结论,重点在于相似对应边成比例.3、B【解析】平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r点P在⊙O外;d=r点P在⊙O上;d<r点P在⊙O内.【详解】∵⊙O的半径为3cm,点P到圆心O的距离为4cm,4cm>3cm,∴点P在圆外.故选:B.【点睛】本题考查平面上的点距离圆心的位置关系的问题.4、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.5、B【分析】由抛物线对称轴为:直线x=1,得x=-2与x=4所对应的函数值相等,即可判断①;由由抛物线的对称性即可判断②;由抛物线的顶点坐标为,结合函数的图象,直接可判断③;由方程有两个实数根和,且,得抛物线与直线的交点的横坐标为和,进而即可判断④.【详解】∵抛物线顶点坐标为,∴抛物线对称轴为:直线x=1,∴x=-2与x=4所对应的函数值相等,即:,∴①正确;由抛物线的对称性可知:若,则或,∴②错误;∵抛物线的顶点坐标为,∴时,,∴③错误;∵方程有两个实数根和,且,∴抛物线与直线的交点的横坐标为和,∵抛物线开口向上,与x轴的交点横坐标分别为:-1,3,∴,∴④正确.故选B.【点睛】本题主要考查二次函数图象与系数得的关系,掌握二次函数系数的几何意义,是解题的关键.6、C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A正确;B、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B正确;C、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C错误;D、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D正确.故选:C.【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.7、B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件.随机事件是指在一定条件下,可能发生也可能不发生的事件.8、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是△BDE的中位线,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得∠CBE=∠CDG,利用ASA可证明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据∠CBE=∠CDG,∠E是公共角可证明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可对③进行判定,根据等底等高的三角形面积相等可对④进行判定,综上即可得答案.【详解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD对角线BD的中点,∴CH=DH=BH=BD,∴HF是△BDE的中位线,∴HF=DE=BD=CH,HF//DE,故①⑤正确,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正确,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③错误,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正确,综上所述:正确的结论有①②④⑤,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.9、A【分析】设获得的利润为y元,由题意得关于x的二次函数,配方,写成顶点式,利用二次函数的性质可得答案.【详解】解:设获得的利润为y元,由题意得:∵a=﹣1<0∴当x=150时,y取得最大值2500元.故选A.【点睛】本题考查了二次函数在实际问题中的应用,正确地写出函数关系式,并明确二次函数的性质,是解题的关键.10、B【解析】试题分析:当x=0时y=6,x=1时y=6,x=﹣2时y=0,可得,解得,∴抛物线解析式为y=﹣x2+x+6=﹣(x﹣)2+,当x=0时y=6,∴抛物线与y轴的交点为(0,6),故①正确;抛物线的对称轴为x=,故②不正确;当x=3时,y=﹣9+3+6=0,∴抛物线过点(3,0),故③正确;∵抛物线开口向下,∴在对称轴左侧y随x的增大而增大,故④正确;综上可知正确的个数为3个,故选B.考点:二次函数的性质.二、填空题(每小题3分,共24分)11、【解析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:将-1、-2、-3分别填入三个空,共有3×2×1=6种情况,其中三组相对的两个面中数字和均为零的情况只有一种,故其概率为.故答案为.【点睛】本题考查概率的求法与运用.一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.12、4【分析】如果设直线AB与x轴交于点C,那么.根据反比例函数的比例系数k的几何意义,求得△AOC的面积和△COB的面积,即可得解.【详解】延长AB交x轴于点C,
根据反比例函数k的几何意义可知:,,
∴,
∴,
解得:.
故答案为:.【点睛】本题考查了反比例函数k的几何意义,解题的关键是正确理解k的几何意义.13、【分析】先把代入求出n的值,然后根据图像解答即可.【详解】把代入,得-n-2=-4,∴n=2,∴当x<2时,.故答案为:x<2.【点睛】本题主要考查一次函数图像上点的坐标特征,以及一次函数和一元一次不等式的关系、数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.14、-1【分析】直接利用二次函数的定义分析得出答案.【详解】解:∵函数是二次函数,
∴m1+m=1,且m-1≠0,
∴m=−1.
故答案为-1.【点睛】此题主要考查了二次函数的定义,正确把握二次函数的次数与系数的值是解题关键.15、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.16、③【分析】①利用可以用来判定二次函数与x轴交点个数,即可得出答案;②根据图中当时的值得正负即可判断;③由函数开口方向可判断的正负,根据对称轴可判断的正负,再根据函数与轴交点可得出的正负,即可得出答案;④根据方程可以看做函数,就相当于函数(a0)向下平移个单位长度,且与有两个交点,即可得出答案.【详解】解:①∵函数与轴有两个交点,∴,所以①错误;②∵当时,,由图可知当,,∴,所以②错误;③∵函数开口向上,∴,∵对称轴,,∴,∵函数与轴交于负半轴,∴,∴,所以③正确;④方程可以看做函数当y=0时也就是与轴交点,∵方程有两个不相等的实数根,∴函数与轴有两个交点∵函数就相当于函数向下平移个单位长度∴由图可知当函数向上平移大于2个单位长度时,交点不足2个,∴,所以④错误.正确答案为:③【点睛】本题考查了二次函数与系数的关系:可以用来判定二次函数与x轴交点的个数,当时,函数与x轴有2个交点;当时,函数与x轴有1个交点;当时,函数与x轴没有交点.;二次函数系数中决定开口方向,当时,开口向上,当时,开口向下;共同决定对称轴的位置,可以根据“左同右异”来判断;决定函数与轴交点.17、【分析】直接把代入解析式,即可得到答案.【详解】解:∵,∴当时,有;故答案为:.【点睛】本题考查了求函数值,解题的关键是熟练掌握函数的解析式.18、x=﹣1【分析】根据一元二次方程的两根得出抛物线与x轴的交点,再利用二次函数的对称性可得答案.【详解】∵一元二次方程的两根为﹣5和3,∴二次函数图象与x轴的交点为(﹣5,0)和(3,0),由抛物线的对称性知抛物线的对称轴为,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点,解题的关键是掌握抛物线与x轴交点坐标与对应一元二次方程间的关系及抛物线的对称性.三、解答题(共66分)19、(1)k>;(2)1.【分析】(1)由方程有两个不相等的实数根知△>2,列出关于k的不等式求解可得;(2)由韦达定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判断出x1>2,x2>2.将原式两边平方后把x1+x2、x1x2代入得到关于k的方程,求解可得.【详解】解:(1)由题意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由题意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同号.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【点睛】本题考查了根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.20、这个游戏对双方不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有9种等可能的结果,两次摸到卡片字母相同的有5种等可能的结果,∴两次摸到卡片字母相同的概率为:;∴小明胜的概率为,小亮胜的概率为,∵≠,∴这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.21、(1)y=;(2)-1【分析】(1)直接利用待定系数法求出反比例函数解析式即可;
(2)直接利用x=1代入求出答案.【详解】解:(1)∵y是x的反比例函数,∴设y=,当x=-2时,y=8,∴k=(-2)×8=-16,∴y=;(2)当x=1时,代入,y=-16÷1=-1.【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键.22、(1)证明见解析;(2)△ABC的面积为42.【分析】(1)在直角三角形中,表示,根据它们相等,即可得出结论(2)利用和勾股定理表示出线段长,根据,求出长【详解】(1)∵AD是BC上的高∴AD⊥BC.∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵=,=又已知∴=.∴AC=BD.(2)在Rt△ADC中,,故可设AD=1k,AC=13k.∴CD==5k.∵BC=BD+CD,又AC=BD,∴BC=13k+5k=12k由已知BC=1,∴12k=1.∴k=.∴AD=1k=1=2.23、(1)见解析;(2)18.【分析】(1)根据平行四边形的性质可得∠A=∠C,AB∥DC,然后根据平行线的性质可得∠ABF=∠CEB,最后根据相似三角形的判定定理可得△ABF∽△CEB;(2)根据已知条件即可得出DE=EC,利用平行四边形的性质和相似三角形的判定可得△DEF∽△CEB,最后根据相似三角形的性质即可求出△CEB的面积.【详解】解:(1)∵四边形ABCD是平行四边形∴∠A=∠C,AB∥DC∴∠ABF=∠CEB∴△ABF∽△CEB;(2)∵DE=CD∴DE=EC∵四边形ABCD是平行四边形∴AD∥BC∴△DEF∽△CEB∴∵△DEF的面积为2∴S△CEB=18【点睛】此题考查的是平行四边形的性质和相似三角形的判定及性质,掌握平行四边形的性质定理和相似三角形的判定定理及性质定理是解决此题的关键.24、(1);(2);(3)山峰的高度即的长大约是719步【分析】(1)),直接利用所给等量关系式代入求解即可;(2),直接利用所给等量关系式代入求解即可;(3)连接,返向延长交于点,再用含AK的式子表示出KE,KC,再根据KE=CK+1000求解即可.【详解】解:(1)(2)(3)连接,返向延长交于点,则,步,在中,同理:∵∴∴解得:(步)∴(步)答:山峰的高度即的长大约是719步.【点睛】本题考查的知识点是锐角三角函数,解题的关键是读懂题意,能够灵活运用所给等量关系式.25、(1)详见解析;(2)详见解析;(3)详见解析.【分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 证券协议经常使用
- 二手车分期付款合同模板
- 购买室内IC卡兼容机协议
- 公司内部股权转让协议范本
- 2025年劳动合同范本
- 商务专员工作职责内容(3篇)
- 2025年医院文化建设阶段总结范文(2篇)
- 一年级班级规章制度(3篇)
- 设备异常运行管理制度模版(3篇)
- 其他副经理安全生产责任制(2篇)
- 北京市西城区师范学校附属小学北师大版数学六年级上册期末试题测试题及答案
- 杭州工地数字化施工方案
- 腾讯云大数据云平台TBDS 产品白皮书
- 网球国家二级裁判培训讲座
- 中南大学军事理论学习通超星课后章节答案期末考试题库2023年
- 员工工资条模板
- 缺点列举法课件
- 篮球专项体育课教学大纲、教学计划
- 创新与创业管理-四川大学中国大学mooc课后章节答案期末考试题库2023年
- 执行依据主文范文(通用4篇)
- 2022年郑州市惠济区事业单位考试真题及答案
评论
0/150
提交评论