年奖-2010a特等奖翻译及注释_第1页
年奖-2010a特等奖翻译及注释_第2页
年奖-2010a特等奖翻译及注释_第3页
年奖-2010a特等奖翻译及注释_第4页
年奖-2010a特等奖翻译及注释_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2010MCM特等ProblemA:TheSweetExplainthe“sweetspot”onabaseballbat.Everyhitterknowsthatthereisaspotonthefatpartofabaseballbatwhere umpoweristransferredtotheballwhenhit.Whyisn’tthisspotatofthebat?Asimpleexplanationbasedontorquemightseemtoidentifyofthebatasthesweetspot,butthisisknowntobeempiricallyincorrect.Developamodelthathelpsexplainthisempiricalfinding.Someplayersbelievethat“corking”abat(hollowingoutacylinderintheheadofthebatandfillingitwithcorkorrubber,thenreplacingawoodcap)enhancesthe“sweetspot”effect.Augmentyourmodeltoconfirmordenythiseffect.DoesthisexplainwhyMajorLeagueBaseballprohibitsDoesthematerialoutofwhichthebatisconstructedmatter?Thatis,doesthismodelpredictdifferentbehaviorforwood(usuallyash)ormetal(usuallyaluminum)bats?IsthiswhyMajorLeagueBaseballprohibitsmetalbats?PeterDiaoMouPrinceton,NJWedeterminethesweetspotonabaseballbat.Wecapturetheessentialphysicalsoftheball-batimpactbytakingtheballtobealossyspringandthebattobeanEuler-Bernoullibeam.Toimpartsomeintuitionaboutthemodel,webeginbypresentingarigid-bodymodel.Next,weuseourfullmodeltoreconcilevariouscorrectandincorrectclaimsthesweetspotfoundintheliterature. Finally,wediscussthesweetspotandtheperformancesofcorkedandaluminumbats,withaparticularemphasisonhoopmodes.确定了棒球棒的最佳击球点。把棒球视作弹性体,把棒视为欧拉—伯努利梁,从而抓住了棒—球作用过程的物理本质。为了把对该问题的直观判断引入模型当中,用一个刚体模型作为初始模型。然后,提出了的波模型,并对一些文献中正确的和不正确的判断做了整合。最后,并对塞有软木的棒球棒和铝质棒球棒的最佳击球点进行了。Althoughahittermightexpectamodelofthebat-baseballcollisiontoyieldinsightintohowthebatbreaks,howthebatimpartsspinontheball,howbesttoswingthebat,andsoon,wemodelonlythesweetspot.转,样最好挥动等等,仅对最击球点行建。Thereareatleasttwonotionsofwherethesweetspotshouldbe—animpactlocationonthebatthateither(对最佳击球点至少有两种定义) forttothehands (对手部的痛感最小izestheoutgoingvelocityoftheball(球速最大Wefocusexclusivelyontheseconddefinition.(只专注于第二个定义Thevelocityoftheballleavingthebatisdeterminedby(决定球速的因素theinitialvelocityandrotationoftheball(球的初速度和角速度theinitialvelocityandrotationofthebat(棒的初速度和角速度therelativepositionandorientationofthebatandball,and(棒的相对位置和方向theforceovertimethatthehitter’shandsapplyonthehandle.(手作用于握柄的时间)Weassumethattheballisnotrotatingandthatitsvelocityatimpactisperpendiculartothelengthofthebat.Weassumethateverythingoccursinasingleplaneandwearguethehands’interactionisnegligible.Intheframeofreferenceofthecenterofmassofthebat,theinitialconditionsarecompleyspecifiedbytheangularvelocityofthebat(棒的角速度thevelocityoftheballand(球的速度thepositionoftheimpactalongthebat(作用点的位置决定Thelocationofthesweetspotdependsnotonjustthebatalonebutalsoonthepitchandontheswing.最佳击球点的位置不仅取决于棒,还取决于挥动轴和挥动的力Thesimplestmodelforthephysicsinvolvedhasthesweetspotatthecenterofpercussion[Brody1986],theimpactlocationthatminimizes forttothehand.Themodelassumesthebat1tobearigidbodyforwhichthereareconjugatepoints:Animpactatonewillexactlybalancetheangularrecoilandlinearrecoilattheother.Bygripatoneandimpactingattheother(thecenterofpercussion),thehandsexperienceminimalshockandtheballexitwithhighvelocity.Thecenterofpercussiondependsheavilyonthemomentofinertiaandthelocationofthe1hands.Wecannotacceptthismodelbecauseitbotherroneouslyequatesthetwodefinitionsofsweetspotandfurthermoreassumesincorrectlythatthebatisarigidbody.一种最简单的模型将撞心视为最佳击球点[Brody1986],球击打该处时对手产生的痛感最小。这个模型把棒球棒假设为刚体,棒上存在一对点:在撞心处的击打力会平衡握柄端的后坐力。握住一端击打撞心会使得手的痛感最小而棒球以高速飞离棒球棒。撞心的位置主要取决于转动惯量和手的位置。由于该模型不仅错误地Anothermodelpredictsthesweetspottobebetweennodesofthetwolowestnaturalfrequenciesofthebat[Nathan2000].Givenafreebatallowedtooscillate,itsoscillationscanbe posedintofundamentalmodesofvariousfrequencies.Differentgeometriesandmaterialshavedifferentnaturalfrequenciesofoscillation.Theresultingwaveshssuggesthowtoexcitethosemodes(e.g.pluckingastringatthenodeofavibrationmodewillnotexcitethatmode).Itisambiguouswhichdefinitionofsweetspotthismodeluses.Usingthedefinition,itwouldfocusonthe fortableexcitationsofvibrationalmodes:Choosingtheimpactlocationtobenearnodesofimportantfrequencies,aminimumof fortablevibrationswillresult.Usingtheseconddefinition,theworryisthatenergysentintovibrationsofthebatwillbelost.Thismodelassumesthatthemostimportantenergiestomodelarethoselosttovibration.另一种模型认为最佳击球点位于棒的前两阶固有频率的节点之间[Nathan2000]。给定一个振动的球棒,它的振动可以分解为许多固有频率不同的基准模态。不同的几何Thismodelraisesmanyquestions.Whichfrequenciesgetexcitedandwhy?TheFouriertransformofanimpulseingeneralcontainsinfiniymanymodes.Furthermore,woodisaviscoelasticmaterialthatquicklydissipatesi ergy.Isthenotionofanoscillatingbatevenrelevanttomodelingabat?Howvalidistheconditionthatthebatisfree?Oughtthesystemtobecoupledwithhandsonthehandle,orthearm’sbonestructure,orpossiblyeventheball?Whattypesofoscillationsarerelevant?Acylindricalstructurecansupportnumerousdifferenttypesofmodesbeyondthetransversemodesusuallyassumedbythismodel[Graff1975].棒是的这个条件有多强?应不应该考虑握柄端对棒的作用,手的骨骼结构,还有很多种振动模态[Gaff17]。Followingthecenter-of-percussionlineofreasoning,howdowemodeltherecoilofthebat?Followingthevibration-nodeslineofreasoning,howdowemodelthevibrationsofthebat?Interaltheoryofimpactmechanics[Goldsmith1960],thesetwoeffectsarethemainones(assumingthatthebatdoesnotbreakordeformpermanently).Brody[1986]ignoresvibrations,Cross[1999]ignoresbatrotationbutstudiesthepropagationoftheimpulsecoupledwithball,andNathan[2000]emphasizesvibrationmodes.Ourapproachreconcilesthetensionamongtheseapproacheswhileemphasizingthecrucialroleplayedbythetime-scaleofthecollision.从前面对撞心的分析,该如何对棒的反应进行建模?从对振动模态的分析来看,种效应起主导作用(假设棒不会断裂也不会发生变形Brody[1986]忽略了振动,Cross[1999]忽略了棒的转动,转而研究在与球的耦合作用下冲击在棒中的,Nathan[2000]则专注于振动模态的研究。的方法在综合这三种方法的同时,还主Ourmaingoalistounderstandthesweetspot.Asecondarygoalistounderstanddifferencesbetweenthesweetspotsofdifferentbattypes.Althoughmarketersofoftenemphasizethesweetspots,thereareotherrelevantfactors:easeofswing,tendencyofthebattobreak,psychologicaleffects,andsoon.Wewillarguethatitdoesn’tmattertothecollisionwhetherthebatter’shandsaregripthehandlefirmlyorifthebatterfollowsthroughontheswing;thesecircumstanceshavenobearingonthetechniquerequiredtoswingthebatorhowthebat’spropertiesaffectit.的首要目标就是理解最佳击球点的含义。次要目标就是理解不同类型的棒球棒的最佳击球点的区别。尽管棒球棒厂商专注于最佳击球点,但是其他因素比如挥舞的轻松程度,棒是否容易断裂,棒球手的心理因素等等也有关系。会证明棒球手是否Ourprisanizedasfollows. ,resenttheBrodyrigid-bodymodel,illuminatingtherecoileffectsofimpact.NextresentafullcomputationalmodelbasedonwavepropagationinanEuler-Bernoullibeamcoupledwiththeballmodeledasalossyspring.Wecomparethismodelwithothersandexplorethelocalnatureofimpact,theinteractionofrecoilandvibrations,androbustnesstoparameterchanges.Weadjusttheparametersofthemodeltocommentonthesweetspotsofcorkedbatsandaluminumbats.Finally,weinvestigatetheeffectofhoopfrequenciesonaluminumbat.了Brdy然后建立了一个纯计算模型,型以欧拉—伯努利梁理论为基础,当作弹性体并考虑了与球的耦合作用。此模型与其他模型做了比较,并研撞击的本质,反冲与振动之间的相互作用验证了参数的鲁棒性。通过改数对塞的hoop(这个“模态”不好翻译)AsimpleWebeginbyconsideringonlytherigidrecoileffectsofthebat—ballcollision,muchasinBrody[1986].Forsimplicity,weassumethatthebatisperfectlyrigid.Becausethecollisionhappensonsuchashorttime-scale(around1ms),wetreatthebatasafreebody.Thatistosay,we’renotconcernedwiththebatter’shandsexertingforceonthebatthatmaybetransferredtotheball.棒是刚体。由于撞击过程的持续时间很短(大约1毫秒,进一步把棒视为刚体。也就是说,不关心棒球手会对球产生力的作用。ThebathasmassMandmomentofinertiaIaboutitscenterofmass.Fromreferenceframeofthecenterofmassofthebatjustbeforethecollision,theballhasinitialvelocityviinthepositivex-directionwhilethebathasinitialangularvelocityi.Inoursetup,viandihaveoppositesignswhenthebatterisswingingattheballasinFigure1,inwhicharrowspointinthepositivedirectionsforcorrespondingparameters.棒球棒的质量为M,绕质心的转动惯量为I。以撞击之前棒的质心标系为参考坐标系,球的初速度为vi

Initial

Distancefrom棒的初始角速度为i。假设正方Figure1中所示。撞击点位于距离棒的质心l处 假设碰撞为正碰撞

碰撞之后,球速为vf,棒球棒质心

Initial的速度为V,角速度为(这 物理量均表示大小,不带符号)做恢复系数,通常用e表示,e0示完全非弹性碰撞,e1表示完全弹性碰撞。在本模型中,做出如下

Figure1Thee对于棒上任何一点都相等eisconstantalongthelengthofthee对于任何vieisconstantforallvi给出模型的基本条件之后,有如下方程 动量守恒(Conservationoflinear MVm(v 角动量守恒(Conservationofangular 恢复系数(Definitionofcoefficientof e(vl)vV 由上述式子解出vifvf

mM1M这里 2 2 I是棒的有效质量。(TheeffectivemassoftheForcalibrationpurposes,weusethefollowingdata,whicharetypicalofaregulationbatconnectingwithafastballinMajorLeagueBaseball.TheresultsareplottedinFigure2.为了最佳击球点的位置有一个初步计,使用以下数据,这些数据全美棒球的典型棒球棒的数据。结果如ure2所示。mM0.145m kg67m/60rad/eFigure2Finalvelocityvf(solidarcattop),swingspeedil(dottedrisingline),andeffectivemass(dashedfallingcurve)asafunctionofdistancel(inmeters)fromcenterofmass. umexitvelocityis27m/s,andthesweetspotis13cmfromthecenterofmass.Missingthesweetspotbyupto5cmresultsinatmost1m/sdifferencefromumvelocity,implyingarlativlywideswet5cm时最大速度减小1m/s,可见最佳击球点的范围较大。Fromthisexample,weseethatthesweetspotisdeterminedbyamultitudeoffactors,includingthelength,mass,andshofthebaseballbat;themassofthebaseball;andthecoefficientofrestitutionbetweenbatandball.Furthermore,thesweetspotisnotuniquelydeterminedbythebatandball:Italsodependsonthe ingbaseballspeedandthebatter’sswingspeed.Figure2alsoshowsintuitivelywhythesweetspotislocatedsomewherebetweenthecenterofmassand ofthebarrel.Asthepointofcollisionmovesout2wardalongthebat,theeffectivemassofthebatgoesdown2,sothatagreaterfractionoftheinitialkineticenergyisputintothebat’srotation.Atthesametime,therotationinthebatmeansthatthebatismovingfasterthanthecenterofmass(orhandle).Thesetwoeffectsworkinoppositedirectionstogiveauniquesweetspotthat’snotateitherendpoint.外移,棒的有效质量减小2,因此的初始动能转化为棒的转动动能。另外由于棒的However,thismodellsonlypartofthestory. Indeed,someofourstartingassumptionscontradicteachother:然而,这个模型还只是揭示了问题的一部分。实际上最初的假设是相互的Wetreatedthebatasafreebodybecausethecollisiontimewassoshort.Inessence,duringthe1msofthecollision,theball“sees”onlythelocalgeometryofthebat,notthebatter’shandsonthehandle.Ontheotherhand,weassumedthatthebatwasperfectlyrigid—butthatmeansthattheball“sees”theentirebat.2”goesup”,”goes由于碰撞时间极短,把棒视为刚体。实际上,在1毫秒的接触时间内,球只对棒的局部起作用,不会影响到握柄端。而另一方面,假设棒球棒是刚体,Wealsoassumedthatisconstantalongthelengthofthebatandfordifferentcollisionvelocities.Experimentalevidence[Adair1994]suggeststhatneitherissuecanbeignoredforanaccuratepredictionofthelocationofthesweetspot.还假设恢复系数对于棒长和任意初速度是常数,实验表明对于精确分析而言,Weneedamoresophisticatedmodeltoaddress 需要建立一个更完善的模型来弥补这些缺OurWedrawfromBrody’srigid-bodymodelbutmoresofromCross[1999].OnecoulddescribeourworkasanadaptionofCross’sworktoactualbaseballbats.Nathan[2000]attemptedsucptionbutwasmisledbyincorrectintuitionabouttheroleofvibrations.WedescribehisapproachanderrorasawaytoexplainCross’sworkandtomotivateourwork.从Brody的刚体模型出发,但是地采用了Cross的模型。的工作可以看是Crss的成果应用于实际棒球棒的变型。atan所误导,对振动所起的作用估计不足。描述了他的方法和错误,以此来阐释PreviousBrody’srigid-bodymodelcorrectlypredictstheexistenceofasweetspotnotattheendofthebat.Thatmodelsuffersfromthefactthatthebatisnotarigidbodyandexperiencevibrations.Onewaytoaccountforvibrationsistomodelthebatasaflexibleobject.Beamtheories(ofvaryingdegreesofaccuracyandcomplication)canmodelaflexiblebat.VanZandt[1992]wasthetocarryoutsuchanysis,modelingthebeamasaTimoshenkobeam,afourth-ordertheorythattakesintoaccountbothshearforcesandtensilestresses.Theequationsarecomplicatedandwewillnotneedthem.VanZandt’smodelassumestheballtobeuncoupledfromthebeamandsimplytakestheimpulseoftheballasagiven.Theresultingvibrationsofthebatareusedtopredictthevelocityofbeamattheimpactpoint(bysummingtheBrodyvelocitywiththevelocityofthedisplacementattheimpactpointduetovibrations)andhencetheexitvelocityoftheballfromtheequationsofthecoefficientofrestitution[VanZandt1992].理论(各种梁理论的精度和复杂度不同)适用于这一弹性体。VanZandt第一个将梁理了剪应力和轴向应力。该理论的方程形式很复杂,在这里不列出来。VanZandt的速度除了包括Brody模型中的速度外,还要加上振动引起的速度,再由恢复系数的表达式即可求出球的最终速度[VanZandt1992]。Cross[1999]modeledtheinteractionoftheimpactofaballwithuminumbeam,usingtheless-elaborateEuler-Bernoulliequationstomodelthepropagationofwaves.Inaddition,heprovidedequationstomodelthedynamicalcouplingoftheballtothebeamduringtheimpact.Afterdiscretizingthebeamspatially,heassumedthattheballactsasalossyspringcoupledtothesinglecomponentoftheregionoftheimpact.Cross使用了较不精确的欧拉-伯努利梁理论来分析铝质棒球棒受到棒球冲击时的振波的。除此之外,他还提供了棒的耦合作用的方程。在将棒球棒之后Cross’sworkwasmotivatedbybothtennisracketsandbaseballbats,whichdifferimportantlyinthetime-scaleofimpact.Thebaseballbat’scollisionlastsonlyabout1ms,duringwhichthepropagationspeedofthewaveisveryimportant.Inthislocalviewoftheimpact,theimportanceofthebaseball’scouplingwiththebatisincreased.Crs为1毫秒左右,这段时间内振动波的速度是很重要的。在撞击的局Crossarguesthattheactualvibrationalmodesandnodepointsarelargelyirrelevantbecausetheinteractionislocalizedonthebat.Theboundaryconditionsmatteronlyifvibrationsreflectofftheboundaries;animpactnotcloseenoughtothebarrelendofthebatwillnotbeaffectedbytheboundarythere.Inparticular,apulsereflectedfromafreeboundaryreturnswiththesamesign(deflectedawayfromtheball,decreasingtheforceontheball,decreasingtheexitvelocity),butapulsereflectedfromafixedboundaryreturnswiththeoppositesign(deflectedtowardstheball,pushingitback,increasingtheexitvelocity).Awayfromtheboundary,weexpecttheexitvelocitytobeuniformalongnon-rotatingbat.Cross’smodelpredictsalloftheseeffects,andheexperimentallyverifiedthem.Inourmodel,weexpectsimilarphenomena,plusthenarrowingofthebarrelnearthehandletoactsomewhatlikeaboundary.件只在振动波到边界的时候才起作用:冲击点离棒的末端足够近时,边界条件才转动的棒球棒来说,球速是一致的。Cross的模型考虑了上述所有因素,他还用实验证明了他的考虑。在的模型中,也认为这样的现象会发生,同时还考虑了握柄Nathan’smodelalsoattemptedtocombinethebestfeaturesofVanZandtandCross[Nathan2000].HistheoryusedthefullTimoshenkotheoryforthebeamandtheCrossmodelfortheball.Heevenacknowledgedthelocalnatureofimpact.Sowheredowedivergefromhim?Hiserrorstemsfromanoveremphasisontryingtoseparateouttheball’sinteractionwitheachseparatevibrationalmode.理论和Cross的棒球模型。他还承认了冲击的局部效应。那么和他的区别在哪里呢?Thesignofinconsistencycomeswhenheusesthe“orthogonalityofeigenstates”todeterminehowmuchagivenimpulseexciteseaode.Theeigenstatesarenotorthogonal.Manytheoriesyieldsymmetricmatricesthatneedtobediagonalized,yieldingtheeigenstates;butTimoshenko’stheorydoesnot,duetothepresenceofodd-orderderivativesinitsequationsNathan’sstoryplaysoutbeautifullyifonlytheeigenstateswereactuallyorthogonal;butwehavenumericallycalculatedtheeigenstates,andtheyarenotevenapproximayorthogonal.Heusestheorthogonalitytodrawimportantconclusions:但是铁摩辛柯梁理论的方程中含有奇次导数项,因此得不到对称矩阵。Nathan的理论在模态具备正交性时很完美,但是计算了这些模态之后,发现它们根本不正交。Thelocationofthenodesofthevibrationalmodesare振动模态的节点位置很High-frequencyeffectscanbecompley高频率效应可以完全忽Wedisagreewithbothofthese.(这两点都不同意(这里突然拿出运动方程显得有些突兀,下面给出推导过程连续系统的振动方程如下

MyKyF离散为n度系统之后,这里M是nn质量矩阵(对称矩阵,K是nn刚度矩阵(正定矩阵y(t是挠度向F(t是外力向量。本方程的解可由假设法或傅里叶变换得到,这里为了得到ysin(t该式对于任何t均成立,则有:

(K2M)0M1K2由此可解出n个模态向量n个相应的固有频率。yM1KyM1令FM1[1

n即可得到文中这部分的相关方程,可见 为对称矩阵,而非文中所说的称矩阵还需的是,文中的下标均使用了爱因斯坦求和约定(Einstein Thecorrectderivationstartswiththefollowingequationofmotion,wherekisthepositionofimpact, yiisthedisplacementandFiistheexternalforceontheithsegmentofthebat,and isasymmetric3matrix:y(t) y(t)F Wewritethesolutionsasy(t) an(t),wherethecolumns4 areeigenmodes eigenvaluesn2.Explicitly,Hjkknn2 and indicatesthekthcomponent thentheigenmode.Thenwewritetheequationof a(t)2a(t)F kn a(t)2a(t) Inthelaststepweusedthefactthattheeigenmodesformacompletebasis.(这里运用了模态矩阵的正交性)FNathan’sp rusesontheright-handsidesimply knFkscaledbyanormalizationconstant.Atglance,thisseemslikeaminortechnicaldetail,butthephysicshereisFimportant.Wecalculatethat

termsstayfairlylargeforevenhighvalueofncorrespondingtothehighfrequencymode(kisjustthepositionofimpact).Thismeansthattherearesignificanthighfrequencycomponents,atleastat.Infact,thehighfrequencymodesarenecessaryfortheimpulsetopropagateslowlyasawavepacket.InNathan’smodel,onlytheloweststandingmodesareexcited;sotheentirebatstartsvibratingassoonastheballhits.Thiscontradictshisearlierbeliefinlocalizedcollision(whichweagreewith)thatthecollisionisoversoquicklythattheball“sees”onlypartofthebat.Nathsoclaimsthatthesweetspotisrelatedtothenodesofthelowestmode,whichcontradictslocality:Thelocationofthelowestordernodesdependsonthegeometryoftheentirebat,includingtheboundaryconditionsatthehandle.Nathan在他的里对右端项使用了正交化常数。乍一看这只是一个小的数学处理 但是这里的物理意义是很重要的计算后发现,即使在n 很大的时候,右端项 对应的数值依然很大,这和高频模态有关(k是冲击点位置。实际上,高频模态对冲击的慢速是必要的。在Nathan的模型里,只有最低的几阶模态受到激发,因此整是同意的)相,撞击很快就结束了以至于球与棒的作用仅限于局部区域。Nathan还声称最佳击球点的位置和最低阶模态的节点位置有关,这也和局部撞击相矛 WhiletheinconsistencyintheNathanmodelmaycancelout,webuildourmodelonamorerigorousfooting.Forsimplicity,weusetheEuler-BernoulliequationsratherthefullTimoshenkoequations.Thedifferenceisthattheformerignoreshearforces.Thisshouldbeacceptable;Nathanpointsoutthathismodelislargelyinsensitivetotheshearmodulus.Wesolvethedifferentialequationsdirectlyafterdiscretizinginspacerather intomodes.Intheseways,wearefollowingtheworkofCrossNathan的模型的缺点可能抵消它的长处,因此在更加严谨的基础上建立的模型。为简化起见,采用欧拉—伯努利方程而不是完整的铁摩辛柯方程。前者忽略了剪切力。这一点是可以接受的;Nathan他的模型对剪切模量很不敏感。我们直接对该偏微分方程离散求解,而没有采用模态分解。从这个意义上来说,沿用了Cross的方法。Ontheotherhand,ourmodelextendsCross’sworkinseveralkey另一方面,的模型在以下几个方面扩展了Cross的工作Weexamineparametersmuchclosertothoserelevanttobaseball.Cross’modelfocusedontennis.Featuringuminumbeamofwidth0.6cmbeinghitwithaballof42gataround1m/s.Forbaseball,wehaveuminumorwoodbatofradiuswidth6cmbeinghitwithaballof145gtravellingat40m/s(whichinvolves5000timesasmuchimpactenergy).采用的是棒球的参数。Cross的模型则专注于网球,以一根直径为0.6cm的铝棒球棒,击打一个重145g、速40m/s的棒球(动能为前者的5000倍。Weallowforavaryingcrosssection,animportantfeatureofareal考虑了截面沿棒长的变化,这是实际棒球棒的一个重要特Weallowthebattohavesomeinitialangularvelocity.Thiswillletusscrutinizetherigid-bodymodelpredictionthathigherangularvelocitiesleadtothe umpowerpointmovingfartherupthebarrel.Toreiterate,themainfeaturesofourmodel再次重申,模型的主要特点是anemphasisontheballcouplingwiththe重点考虑球与棒的耦合Finitespeedofwavepropagationinashorttime-scale,振动波的速度有Adaptiontorealistic更接近真实的棒Thesearenaturaloutgrowthsoftheapproachesinthe这些是文献中所述方法的自然延伸MathematicsofOur取梁的微元段dx列力平衡方程和力矩平衡方程y方向力平衡:x 2 xdx Fs(Fs sdx)F 化简得:2yFsl 力矩平衡:

x MFdx(M dx) 化简得:

F 由材料力学:2 EI 综上得:

2y

2(EI2y)F(x,t)l OurequationsareadiscretizedversionoftheEuler-Bernoulli 2y(z, 2y(z, F(z, t z z ( (

2 2(YI2y)F(z,t)

l isthemassdensity,(质量密度(应该为线密度l

isthedisplacement,(挠度istheexternalforceinourcase,appliedbytheball),(外力YistheYoung’smodulusofthematerialaconstantand(杨氏模量IisthesecondmomentofareaR4/ forasoliddisc).(截面惯性矩(A是棒的截面积,z是棒的自然坐标,对z离散,步长为,采用中心差分)WediscretizezinstepsofTheonlyforceisfromtheballinthenegativedirectiontothekthsegment.Ourdiscretizedequationis:d2yiF(t)Y ( 2y y 2Ii(yi12yiyi1)Ii1(yi2yi1这里把第 个单元(即棒球作用的单元)上的分布力等效为集中力(乘以单元步长Ourdynamicvariablesarey1throughyN.Forafixedleftend,retendy1y00.Forafreeleftend,retendy1y0y0y1y1Theconditionsontherightendareogous.ThesearethesameconditionsthatCrossFinally,wehaveanadditionalvariablefortheball’sposition(relativetosomezerow(t).Initially,w(t)ispositiveand w(t)isnegative,sotheballismovingfromthepositivedirectiontowardsthenegative.Letu(t)w(t)yk(t).Thisvariablerepresentsthecompressionoftheball,andwereplace F(t) withF(u(t),u(t)).Initially,u(t)0andu(t)vball.TheforcebetweentheballandthebattakestheformofhysteresiscurvessuchastheonesshowninFigure3.因此棒球向负方向运动。令u(t)w(t)yk(t,u(t)表示球的压缩量,作用力是时间的函数,因此也是u(t和u(t的函数。初始时刻u(t0u(tvball。球与棒的作用力与球的压缩量的关系如图3所示。Figure3Ahysteresiscurveusedinourmodeling, umcompression1.5Thehighercurveistakenwhenu(t)0(compression)andthelowercurvewhenu(t)0(expansion).Whenu(t)0,theforceiszero.Theequationofmotionfortheballisw(t)u(t)y(t) Wehaveeliminatedthevariable图中上方的曲线为压缩过程,u(t)0,下方的曲线为扩张过程,u(t)0作用力为零。球的运动方程如下:kw(t)u(t)y(t)k

这 就消去了wWehaveyettospecifythefunctionF(u(t),u(t)).Ascanbeseenin s[BaseballResearchCentern.d.],theballcompresssignificantly(oftenmorethan1cm)inacollision.Thecompressionand pressionislossy.Wecouldmodelthislossbysubtractingafractionoftheball’senergyafterthecollision;thatapproachisgoodenoughformanypurposes,butweinsteadfollowNathananduseanonlinearspringwithhysteresis.但是还没有确定函数F(u(t),u(t))。正如在里看到的,棒球在撞击过程中显著SinceWFdx,thetotalenergylostistheareabetweenthetwocurvesinFblemwithcreatinghysteresiscurvesisthatonedoesnotknowthe compression(i.e.wheretostartdrawingthebottomcurve)untilaftersolvingtheequationsofmotion.Inpractice,wesolvetheequationintwosteps.3,用两步来解方程。Themainassumptionsofourmodelderivefromthemainassumptionsofeach模型的主要假设就是对这两个方程(方程(1)和(2))的假设Theistheexactformofthehysteresiscurveoftheball.Cross[1999]arguesthattheexactformofthecurveisnotveryimportantaslongasthedurationofimpact,magnitudeofimpulse, umcompressionoftheball,andenergylossareroughly续时间,冲击的大球的最大压缩量和能量损失大概正确。BoththeTimoshenkoandEuler—Bernoullitheoriesignoreazimuthalandlongitudinalwaves.Thisisafundamentalassumptionbuiltintoalloftheapproachesintheliterature.Assumingthattheimpactoftheballistransverseandtheballdoesnotrotate,theassumptionisjustified.铁摩辛柯和欧拉伯—努利梁理论都忽略了方位波和纵波。这是文献中所有方法本假设。假设棒球的冲击是横向的,棒球不发生旋转,这样假设是合理的Theassumptionsofourmodelarethesameasthoseintheliterature,sotheyarebytheliterature’s()上法”求解,这里给出全部求解过程对方程(1)散后的棒的振动方程为:d2yi F(t) ( 2y y l l 2Ii(yi12yiyi1)Ii1(yi2yi1对方程

散后的球的运动程为

i , d2u

)F(u,du)

[

2I

l

l

k

k

k

k yk1(k1)21()联立方程()和()求解。由图,假设作用力与压缩量的关系曲线的形式,假设压缩段为直线,松弛段为:1.52将方程(3)和(4)联写成矩阵形式从而转化为常微分方程组的初值问题,可利用的相关函数求d2 dtd2 dt

y2 y1d2

dt

d2 Y dtY d2 k

(N6)(N k dt yk1 yk2 yN2 dt

d

N2Fdt

需注意的是,上式左端未知量为加速度项,右端未知量为位移项,在球棒作用期间,位移的变化远远快于加速度的变化,因此这是一个刚性问题(F()表示成u()的函数)其中 T

k

k

k

k

3k 3 11Ik11Ik(2Ik12Ik (Ik1+4Ik+Ik1(2Ik2IkIk+l写成便于用ode求解的形式是:其中

PTP[y2, y2,u,y,y y T I 0

Q[y2,

2(N6)2(NyN2,u,y2, 设球压缩到最大对应的时间为t1,从时刻t1到球离开棒的时间为则 F(u) 初始条件为

y2y1y0y1 yN2u其中w为棒的角速度

i 这里由于t1和t2的值未知,而t1t21.4ms,只好对t1和t2的值进行SimulationOurmodel’stwomainfeaturesarewavepropagationinthebatandpessonofheba.heaersustaedbyheasmetyofhepotnigurea.hspotasoeveasheie-scaeofhecoson:hebaleaeshebat.4saferipac.Dungandafercoson,shockwaespopaaehouhheba.模型的两个主要特点就是同时振动波在棒中的和球的压缩扩张程。后a.4毫秒离开棒球棒。碰撞期间和碰撞后,振动波在棒球棒中。Inthisexample,thebatstruck60cmfromthehandle.Whatdoesthecollisionlooklikeat10cmfromthehandle?Figure4bshowstheanswer:Theotherendofthebatdoesnotfeelanythinguntilabout0.4msanddoesnotfeelsignificantforcesuntilabout1.0ms.Bythetimethatportionofthebatswingsback(almost2.0ms),theballhasalreadyleftcontactwiththebat.Thisilluminatesanimportantpoint:Weareconcernedonlywithforcesontheballth twithinthe1.4mstime-frameofthecollision.Anywavestakinglongertoreturntotheimpactlocationdonotaffectexitvelocity.答案:该处知道撞击发生后大约0.4毫秒才发生振动,直到大约1.0毫秒后才达到最位移。到位移重新达到最小值时(撞击发生2.0毫秒之后球已经飞离了棒。这也说Havingdemonstratedthebasicfeaturesofourmodel,wenowreplicatesomeofresultsbutwithbaseball-likeparameters.InFigure5a,weshowthattheeffectsoffixed-free-boundaryconditionsareinagreementwithCross’s球的参数。在图5a中,表明在固端边界和边界条件下的结果都和Cross的模Asweexpected,fixedboundariesenhancetheexitvelocityandfreeboundariesreducethem.Fromthisresult,weseetheeffectofthesh ofthebat.Thehandledoesindeedactlikeafreeboundary.Thedistancebetweentheboundariesistoosmalltogetaflatzoneintheexitvelocityvs.positioncurve.Ifweextendthebarrelby26cm.aflatzonedevelops(Figure5b;noticethechangeinaxes).Intuitively,thisflatzoneexistsbecausetheball“sees”onlythelocalgeometryofthebatandtheboundariesaretoofarawaytohavesubstantial正如预料的,固端边界增大了球速,边界减小了球速。从这一结果可以看出棒的形状的影响。握柄端的作用相当于一个边界。两个边界之间的距离较短时,最佳击球区较窄,如果增大棒长26cm,最佳击球区会变宽(图5b。直观的解释是,在两端边界距离较远时,棒球的作用仅限于冲击的局部区域,最佳击球区就更加平缓Fromnowon,weusean84-cmbatfreeonbothends,wherepositionzerodenotesthehandleend.Inthisbasecase,thesweetspotisat70cm.Weinvestigatethedependenceoftheexitspeedontheinitialangularvelocity.Accordingtorigid-bodymodels,thesweetspotisexactlyatthecenterofmassifthebathasnoangularvelocity.InFigure6, theresultsofchangingtheangularvelocity.Ourresultscontrastgreatlywiththesimpleexamplepresentedearlier.Whiletheangular-rotationeffectisstillthere,theeffectivemassplaysonlyanegligibleroleindeterminingtheexitspeed.Inotherwords,thebatisnotarigidbodybecausetheentirebatdoesnotreactinstantly.Thedominatingeffectisfromtheboundaries:ofthebarrelandwherethebarreltrsoff.Thesefreeendscauseasignificantdropinexitvelocity.Increasingtheangularvelocityofthebatincreasestheexitvelocity,inpartjustbecausetheimpactvelocityisgreater(byafactorofdistancefromthecenterofmassofthebat).

witimes位置为70cm。研究了球速对初始角速度的依赖性。根据刚体模型,在棒球棒没有初始角速度时,最佳击球点就在棒的质心位置。在图6中,给出了改变角速度后棒球棒不是刚体。起主要作用的是边界条件:棒的末端和棒的细端。这些边界使速度等于角速度wi乘以作用点距离质心的距离lInFigure7a,weshowthatnearthesweetspot(at0.7m),inincreasingangularvelocityactuallydecreasestheexcessexitvelocity(relativetotheimpactvelocity).Weshouldexpectthis,sinceathigherimpactvelocity,moreenergyislosttotheball’scompressionandpression.Toconfirmthisresult,wealsorecreatetheplotinFigure7bbutwithoutthehysteresiscurve—inwhichcasethiseffectdisappears.Thisexampleisoneofthefewplaceswherethehysteresiscurvemakesadifference,confi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论