2023届浙江省杭州市萧山区朝晖初级中学数学九年级上册期末复习检测试题含解析_第1页
2023届浙江省杭州市萧山区朝晖初级中学数学九年级上册期末复习检测试题含解析_第2页
2023届浙江省杭州市萧山区朝晖初级中学数学九年级上册期末复习检测试题含解析_第3页
2023届浙江省杭州市萧山区朝晖初级中学数学九年级上册期末复习检测试题含解析_第4页
2023届浙江省杭州市萧山区朝晖初级中学数学九年级上册期末复习检测试题含解析_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.2.二次函数部分图象如图所示,有以下结论:①;②;③,其中正确的是()A.①②③ B.②③ C.①② D.①③3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,则ax2+bx+c=0的解是()A.x1=-3,x2=1 B.x1=3,x2=1 C.x=-3 D.x=-24.如图,已知矩形的面积是,它的对角线与双曲线图象交于点,且,则值是()A. B. C. D.5.下面空心圆柱形物体的左视图是()A. B. C. D.6.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),说法:①abc<0;②2a﹣b=0;③﹣a+c<0;④若(﹣5,y1)、(,y2)是抛物线上两点,则y1>y2,其中说法正确的有()个.A.1 B.2 C.3 D.47.从一个不透明的口袋中摸出红球的概率为,已知口袋中的红球是3个,则袋中共有球的个数是()A.5 B.8 C.10 D.158.如图,中,,,,则的长为()A. B. C.5 D.9.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)10.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于.12.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.13.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_______.14.已知CD是Rt△ABC的斜边AB上的中线,若∠A=35°,则∠BCD=_____________.15.把两块同样大小的含角的三角板的直角重合并按图1方式放置,点是两块三角板的边与的交点,将三角板绕点按顺时针方向旋转到图2的位置,若,则点所走过的路程是_________.16.如图,已知∠BAD=∠CAE,∠ABC=∠ADE,AD=3,AE=2,CE=4,则BD为_____.17.如图,AC是⊙O的直径,弦BD⊥AC于点E,连接BC过点O作OF⊥BC于点F,若BD=12cm,AE=4cm,则OF的长度是___cm.18.如图,已知在中,.以为直径作半圆,交于点.若,则的度数是________度.三、解答题(共66分)19.(10分)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.(6分)如图,抛物线与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=﹣1和x=3时,y值相等.直线y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M.(1)求这条抛物线的表达式.(2)动点P从原点O出发,在线段OB上以每秒1个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒2个单位长度的速度向点C运动,当一个点到达终点时,另一个点立即停止运动,设运动时间为t秒.①求t的取值范围.②若使△BPQ为直角三角形,请求出符合条件的t值;③t为何值时,四边形ACQP的面积有最小值,最小值是多少?直接写出答案.21.(6分)如图,在正方形中,是对角线上的一个动点,连接,过点作交于点.(1)如图①,求证:;(2)如图②,连接为的中点,的延长线交边于点,当时,求和的长;(3)如图③,过点作于,当时,求的面积.22.(8分)已知抛物线与轴的两个交点是点,(在的左侧),与轴的交点是点.(1)求证:,两点中必有一个点坐标是;(2)若抛物线的对称轴是,求其解析式;(3)在(2)的条件下,抛物线上是否存在一点,使?如果存在,求出点的坐标;如果不存在,请说明理由.23.(8分)2019年九龙口诗词大会在九龙口镇召开,我校九年级选拔了3名男生和2名女生参加某分会场的志愿者工作.本次学生志愿者工作一共设置了三个岗位,分别是引导员、联络员和咨询员.(1)若要从这5名志愿者中随机选取一位作为引导员,求选到女生的概率;(2)若甲、乙两位志愿者都从三个岗位中随机选择一个,请你用画树状图或列表法求出他们恰好选择同一个岗位的概率.(画树状图和列表时可用字母代替岗位名称)24.(8分)如图,点A、B、C、D是⊙O上的四个点,AD是⊙O的直径,过点C的切线与AB的延长线垂直于点E,连接AC、BD相交于点F.(1)求证:AC平分∠BAD;(2)若⊙O的半径为,AC=6,求DF的长.25.(10分)如图,在等边△ABC中,AB=6,AD是高.(1)尺规作图:作△ABC的外接圆⊙O(保留作图痕迹,不写作法)(2)在(1)所作的图中,求线段AD,BD与弧所围成的封闭图形的面积.26.(10分)如图,取△ABC的边AB的中点O,以O为圆心AB为半径作⊙O交BC于点D,过点D作⊙O的切线DE,若DE⊥AC,垂足为点E.(1)求证:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,则的长为.

参考答案一、选择题(每小题3分,共30分)1、D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.2、A【分析】根据二次函数的性质,结合图中信息,一一判断即可解决问题.【详解】由图象可知,a<0,b<0,c>0∴,①正确;图像与x轴有两个交点,∴,②正确;对称轴x=,∴,故③正确;故选A.【点睛】本题考查二次函数图象与系数的关系,解题的关键是灵活应用图中信息解决问题,属于中考常考题型.3、A【解析】已知抛物线y=ax2+bx+c与x轴的一个交点为A(1,0),对称轴是直线x=-1,由此可得抛物线与x轴的另一个交点坐标为(-3,0),所以方程ax2+bx+c=0的解是x1=-3,x2=1,故选A.4、D【分析】过点D作DE∥AB交AO于点E,通过平行线分线段成比例求出的长度,从而确定点D的坐标,代入到解析式中得到k的值,最后利用矩形的面积即可得出答案.【详解】过点D作DE∥AB交AO于点E∵DE∥AB∴∵∴∴∴∵点D在上∴∵∴故选D【点睛】本题主要考查平行线分线段成比例及反比例函数,掌握平行线分线段成比例是解题的关键.5、A【解析】试题分析:找出从几何体的左边看所得到的视图即可.解:从几何体的左边看可得,故选A.6、D【分析】由抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣1时,y<0,则得到a﹣2a+c<0,则可对③进行判断;通过点(﹣5,y1)和点(,y2)离对称轴的远近对④进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=﹣1时,y=a﹣b+c<0,∵b=2a,∴a﹣2a+c<0,即﹣a+c<0,所以③正确;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④正确.故答案为D.【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键..7、D【分析】根据概率公式,即可求解.【详解】3÷=15(个),答:袋中共有球的个数是15个.故选D.【点睛】本题主要考查概率公式,掌握概率公式,是解题的关键.8、C【解析】过C作CD⊥AB于D,根据含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【详解】过C作CD⊥AB于D,则∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故选C.【点睛】本题考查解直角三角形.9、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.10、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.二、填空题(每小题3分,共24分)11、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.第n个等边三角形的周长等于.12、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.13、y=2(x+2)2﹣1【解析】直接根据“上加下减、左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,二次函数y=2x2的图象向下平移1个单位得到y=2x2−1,由“上加下减”的原则可知,将二次函数y=2x2−1的图象向左平移2个单位可得到函数y=2(x+2)2−1,故答案是:y=2(x+2)2−1.【点睛】本题考查的是二次函数图象与几何变换,熟练掌握规律是解题的关键.14、55°【分析】这道题可以根据CD为斜边AB的中线得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,则∠BCD=90°-35°=55°.【详解】如图,∵CD为斜边AB的中线∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°则∠BCD=90°-35°=55°故填:55°.【点睛】此题主要考查三角形内角度求解,解题的关键是熟知直角三角形的性质.15、【分析】两块三角板的边与的交点所走过的路程,需分类讨论,由图①的点运动到图②的点,由图②的点运动到图③的点,总路程为,分别求解即可.【详解】如图,两块三角板的边与的交点所走过的路程,分两步走:(1)由图①的点运动到图②的点,此时:AC⊥DE,点C到直线DE的距离最短,所以CF最短,则PF最长,根据题意,,,在中,∴;(2)由图②的点运动到图③的点,过G作GH⊥DC于H,如下图,∵,且GH⊥DC,∴是等腰直角三角形,∴,设,则,∴,∴,解得:,即,点所走过的路程:,故答案为:【点睛】本题是一道需要把旋转角的概念和解直角三角形相结合求解的综合题,考查学生综合运用数学知识的能力.正确确定点所走过的路程是解答本题的关键.16、1【解析】根据相似三角形的判定和性质定理即可得到结论.【详解】解:∵∠BAD=∠CAE,∴∠BAC=∠DAE,∵∠ABC=∠ADE,∴△ABC∽△ADE,∴=,∴,∴△ABD∽△ACE,∴,∴,∴BD=1,故答案为:1.【点睛】本题考查了相似三角形的判定和性质定理,找对应角或对应边的比值是解题的关键.17、.【分析】连接OB,根据垂径定理和勾股定理即可求出OB,从而求出EC,再根据勾股定理即可求出BC,根据三线合一即可求出BF,最后再利用勾股定理即可求出OF.【详解】连接OB,∵AC是⊙O的直径,弦BD⊥AC,∴BE=BD=6cm,在Rt△OEB中,OB2=OE2+BE2,即OB2=(OB﹣4)2+62,解得:OB=,∴AC=2OA=2OB=13cm则EC=AC﹣AE=9cm,BC===3cm,∵OF⊥BC,OB=OC∴BF=BC=cm,∴OF===cm,故答案为.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.18、1【分析】首先连接AD,由等腰△ABC中,AB=AC,以AB为直径的半圆交BC于点D,可得∠BAD=∠CAD=20°,即可得∠ABD=70°,继而求得∠AOD的度数,则可求得的度数.【详解】解:连接AD、OD,

∵AB为直径,

∴∠ADB=90°,

即AD⊥BC,

∵AB=AC,

∴∠ABD=70°,

∴∠AOD=1°

∴的度数1°;

故答案为1.【点睛】此题考查了圆周角定理以及等腰三角形的性质,注意掌握辅助线的作法,注意掌握数形结合思想的应用.三、解答题(共66分)19、(1)y=-x2+x-2;(2)点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【解析】(1)用待定系数法求出抛物线解析式;

(2)以A、P、M为顶点的三角形与△OAC相似,分两种情况讨论计算即可.【详解】解:(1)∵该抛物线过点C(0,-2),∴可设该抛物线的解析式为y=ax2+bx-2.将A(4,0),B(1,0)代入,得,解得,∴此抛物线的解析式为.(2)存在,设P点的横坐标为m,则P点的纵坐标为-m2+m-2,当1<m<4时,AM=4-m,PM=-m2+m-2.又∵∠COA=∠PMA=90°,∴①当==时,△APM∽△ACO,即4-m=2(-m2+m-2).解得m1=2,m2=4(舍去),∴P(2,1).②当==时,△APM∽△CAO,即2(4-m)=-m2+m-2.解得m1=4,m2=5(均不合题意,舍去),∴当1<m<4时,P(2,1).类似地可求出当m>4时,P(5,-2).当m<1时,P(-3,-14)或P(0,-2),综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14)或(0,-2).【点睛】本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.20、(1);(2)①,②t的值为或,③当t=2时,四边形ACQP的面积有最小值,最小值是.【分析】(1)求出对称轴,再求出y=与抛物线的两个交点坐标,将其代入抛物线的顶点式即可;(2)①先求出A、B、C的坐标,写出OB、OC的长度,再求出BC的长度,由运动速度即可求出t的取值范围;②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,分别证△BPQ∽△BOC和△BPQ∽△BCO,即可求出t的值;③如图,过点Q作QH⊥x轴于点H,证△BHQ∽△BOC,求出HQ的长,由公式S四边形ACQP=S△ABC-S△BPQ可求出含t的四边形ACQP的面积,通过二次函数的图象及性质可写出结论.【详解】解:(1)∵在抛物线中,当x=﹣1和x=3时,y值相等,∴对称轴为x=1,∵y=与抛物线有两个交点,其中一个交点的横坐标是6,另一个交点是这条抛物线的顶点M,∴顶点M(1,),另一交点为(6,6),∴可设抛物线的解析式为y=a(x﹣1)2,将点(6,6)代入y=a(x﹣1)2,得6=a(6﹣1)2,∴a=,∴抛物线的解析式为(2)①在中,当y=0时,x1=﹣2,x2=4;当x=0时,y=﹣3,∴A(﹣2,0),B(4,0),C(0,﹣3),∴在Rt△OCB中,OB=4,OC=3,∴BC==5,∴,∵<4,∴②当△BPQ为直角三角形时,只存在∠BPQ=90°或∠PQB=90°两种情况,当∠BPQ=90°时,∠BPQ=∠BOC=90°,∴PQ∥OC,∴△BPQ∽△BOC,∴,即,∴t=;当∠PQB=90°时,∠PQB=∠BOC=90°,∠PBQ=∠CBO,∴△BPQ∽△BCO,∴,即,∴t=,综上所述,t的值为或;③如右图,过点Q作QH⊥x轴于点H,则∠BHQ=∠BOC=90°,∴HQ∥OC,∴△BHQ∽△BOC,∴,即,∴HQ=,∴S四边形ACQP=S△ABC﹣S△BPQ=×6×3﹣(4﹣t)×t=(t﹣2)2+,∵>0,∴当t=2时,四边形ACQP的面积有最小值,最小值是.【点睛】本题考查了待定系数法求解析式,相似三角形的判定及性质,二次函数的图象及性质等,熟练掌握并灵活运用是解题的关键.21、(1)见解析;(2);;(3)面积为.【分析】(1)过点M作MF⊥AB于F,作MG⊥BC于G,由正方形的性质得出∠ABD=∠DBC=45°,由角平分线的性质得出MF=MG,证得四边形FBGM是正方形,得出∠FMG=90°,证出∠AMF=∠NMG,证明△AMF≌△NMG,即可得出结论;(2)证明Rt△AMN∽Rt△BCD,得出,求出AN=2,由勾股定理得出BN==4,由直角三角形的性质得出OM=OA=ON=AN=,OM⊥AN,证明△PAO∽△NAB,得出,求出OP=,即可得出结果;(3)过点A作AF⊥BD于F,证明△AFM≌△MHN得出AF=MH,求出AF=BD=×6=3,得出MH=3,MN=2,由勾股定理得出HN=,由三角形面积公式即可得出结果.【详解】(1)证明:过点作于,作于,如图①所示:,四边形是正方形,,,,,四边形是正方形,,,,,,在和中,,;(2)解:在中,由(1)知:,,,,,在中,,,,解得:,在中,,在中,是的中点,,,,,,,即:,解得:,;(3)解:过点作于,如图③所示:,,,,,,,在和中,,,在等腰直角中,,,,,,的面积为.【点睛】本题是相似形综合题目,考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的判定与性质、直角三角形的性质、勾股定理、角平分线的性质等知识;本题综合性强,有一定难度,证明三角形相似和三角形全等是解题的关键.22、(1)见解析;(2);(3)或【分析】(1)将抛物线表达式变形为,求出与x轴交点坐标即可证明;(2)根据抛物线对称轴的公式,将代入即可求得a值,从而得到解析式;(3)分点P在AC上方和下方两种情况,结合∠ACO=45°得出直线PC与x轴所夹锐角度数,从而求出直线PC解析式,继而联立方程组,解之可得答案.【详解】解:(1)=,令y=0,则,,则抛物线与x轴的交点中有一个为(-2,0);(2)抛物线的对称轴是:=,解得:,代入解析式,抛物线的解析式为:;(3)存在这样的点,,,如图1,当点在直线上方时,记直线与轴的交点为,,,,则,,则,,求得直线解析式为,联立,解得或,,;如图2,当点在直线下方时,记直线与轴的交点为,,,,则,,,求得直线解析式为,联立,解得:或,,,综上,点的坐标为,或,.【点睛】本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的图象和性质、直线与抛物线相交的问题等.23、(1)随机选取一位作为引导员,选到女生的概率为;(2)甲、乙两位志愿者选择同一个岗位的概率为.【分析】(1)直接利用概率公式求出即可;

(2)用列表法表示所有可能出现的情况,共9中可能的结果数,选择同一岗位的有三种,可求出概率.【详解】(1)5名志愿者中有2名女生,因此随机选取一位作为引导员,选到女生的概率为,即:P=,答:随机选取一位作为引导员,选到女生的概率为.(2)用列表法表示所有可能出现的情况:∴.答:甲、乙两位志愿者选择同一个岗位的概率为.【点睛】本题考查了随机事件发生的概率,关键是用列表法或树状图表示出所有等可能出现的结果数,用列表法或树状图的前提是必须使每一种情况发生的可能性是均等的.24、(1)证明见解析;(2).【分析】(1)连接OC,先证明OC∥AE,从而得∠OCA=∠EAC,再利用OA=OC得∠OAC=∠OCA,等量代换即可证得答案;(2)设OC交BD于点G,连接DC,先证明△ACD∽△AEC,从而利用相似三角形的性质解得,再利用=cos∠FDC,代入相关线段的长可求得DF.【详解】(1)证明:如图,连接OC∵过点C的切线与AB的延长线垂直于点E,∴OC⊥CE,CE⊥AE∴OC∥AE∴∠OCA=∠EAC∵OA=OC∴∠O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论