2023届陕西省陕西师范大附属中学九年级数学上册期末学业水平测试模拟试题含解析_第1页
2023届陕西省陕西师范大附属中学九年级数学上册期末学业水平测试模拟试题含解析_第2页
2023届陕西省陕西师范大附属中学九年级数学上册期末学业水平测试模拟试题含解析_第3页
2023届陕西省陕西师范大附属中学九年级数学上册期末学业水平测试模拟试题含解析_第4页
2023届陕西省陕西师范大附属中学九年级数学上册期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,点D,E分别在AB,AC上,DE∥BC,且DE将△ABC分成面积相等的两部分,那么的值为()A.﹣1 B.+1 C.1 D.2.如图,在中,,将△AOC绕点O顺时针旋转后得到,则AC边在旋转过程中所扫过的图形的面积为().A. B. C. D.3.如图,在平行四边形中,点是边上一点,且,交对角线于点,则等于()A. B. C. D.4.定点投篮是同学们喜爱的体育项目之一,某位同学投出篮球的飞行路线可以看作是抛物线的一部分,篮球飞行的竖直高度(单位:)与水平距离(单位:)近似满足函数关系(a≠0).下表记录了该同学将篮球投出后的与的三组数据,根据上述函数模型和数据,可推断出篮球飞行到最高点时,水平距离为()x(单位:m)y(单位:m)3.05A. B. C. D.5.如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A. B. C. D.6.如图,△ABC中,∠C=90°,AB=5,AC=4,且点D,E分别是AC,AB的中点,若作半径为3的⊙C,则下列选项中的点在⊙C外的是()A.点B B.点D C.点E D.点A7.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.8.某校科技实践社团制作实践设备,小明的操作过程如下:①小明取出老师提供的圆形细铁环,先通过在圆一章中学到的知识找到圆心O,再任意找出圆O的一条直径标记为AB(如图1),测量出AB=4分米;②将圆环进行翻折使点B落在圆心O的位置,翻折部分的圆环和未翻折的圆环产生交点分别标记为C、D(如图2);③用一细橡胶棒连接C、D两点(如图3);④计算出橡胶棒CD的长度.小明计算橡胶棒CD的长度为()A.2分米 B.2分米 C.3分米 D.3分米9.如果△ABC∽△DEF,相似比为2:1,且△DEF的面积为4,那么△ABC的面积为()A.1 B.4 C.8 D.1610.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定二、填空题(每小题3分,共24分)11.如图,在坐标系中放置一菱形,已知,,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,,,…,则的坐标为__________.12.已知,如图,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=______cm.13.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.14.已知抛物线与x轴只有一个公共点,则m=___________.15.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.16.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.17.如图,利用我们现在已经学过的圆和锐角三角函数的知识可知,半径r和圆心角θ及其所对的弦长l之间的关系为,从而,综合上述材料当时,______.18.如图,竖直放置的一个铝合金窗框由矩形和弧形两部分组成,AB=m,AD=2m,弧CD所对的圆心角为∠COD=120°.现将窗框绕点B顺时针旋转横放在水平的地面上,这一过程中,窗框上的点到地面的最大高度为__m.三、解答题(共66分)19.(10分)某班级元旦晚会上,有一个闯关游戏,在一个不透明的布袋中放入3个乒乓球,除颜色外其它都相同,它们的颜色分别是绿色、黄色和红色.搅均后从中随意地摸出一个乒乓球,记下颜色后放回,搅均后再从袋中随意地摸出一个乒乓球,如果两次摸出的球的颜色相同,即为过关.请用画树状图或列表法求过关的概率.20.(6分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的销售价p(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示设第x天的日销售额为w(单位:元)(1)第11天的日销售额w为元;(2)观察图象,求当16≤x≤20时,日销售额w与上市时间x之间的函数关系式及w的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?21.(6分)抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),与y轴交于点C.点D(xD,yD)为抛物线上一个动点,其中1<xD<1.连接AC,BC,DB,DC.(1)求该抛物线的解析式;(2)当△BCD的面积等于△AOC的面积的2倍时,求点D的坐标;(1)在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.22.(8分)二次函数的图象如图所示,根据图象解答下列问题:(1)写出方程的两个根;(2)若方程有两个不相等的实数根,求的取值范围;(3)若抛物线与直线相交于,两点,写出抛物线在直线下方时的取值范围.23.(8分)如图,在正方形ABCD中,,点E为对角线AC上一动点(点E不与点A、C重合),连接DE,过点E作,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求AC的长;(2)求证矩形DEFG是正方形;(3)探究:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.24.(8分)已知:在同一平面直角坐标系中,一次函数与二次函数的图象交于点.(1)求,的值;(2)求二次函数图象的对称轴和顶点坐标.25.(10分)某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)405060销售量y(千克)1008060(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入−成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?26.(10分)如图,已知点,是一次函数图象与反比例函数图象的交点,且一次函数与轴交于点.(1)求该反比例函数和一次函数的解析式;(2)连接,求的面积;(3)在轴上有一点,使得,求出点的坐标.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由条件DE∥BC,可得△ADE∽△ABC,又由DE将△ABC分成面积相等的两部分,可得S△ADE:S△ABC=1:1,根据相似三角形面积之比等于相似比的平方,可得答案.【详解】如图所示:∵DE∥BC,∴△ADE∽△ABC.设DE:BC=1:x,则由相似三角形的性质可得:S△ADE:S△ABC=1:x1.又∵DE将△ABC分成面积相等的两部分,∴x1=1,∴x,即.故选:D.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.2、B【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式即可求解.【详解】解:∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积故选B.【点睛】考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题关键.3、A【分析】根据平行四边形的性质和相似三角形的性质解答即可.【详解】解:∵四边形是平行四边形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故选:A.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题的关键.4、C【分析】用待定系数法可求二次函数的表达式,从而可得出答案.【详解】将代入中得解得∴∵∴当时,故选C【点睛】本题主要考查待定系数法求二次函数的解析式及二次函数的最大值,掌握二次函数的图象和性质是解题的关键.5、C【分析】根据等边三角形的性质可得出∠B=∠C=60°,由等角的补角相等可得出∠BAP=∠CPD,进而即可证出△ABP∽△PCD,根据相似三角形的性质即可得出y=-x2+x,对照四个选项即可得出.【详解】∵△ABC为等边三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键.6、D【分析】分别求出AC、CE、BC、CD的长,根据点与圆的位置关系的判断方法进行判断即可.【详解】如图,连接CE,∵∠C=90°,AB=5,AC=4,∴BC==3,∵点D,E分别是AC,AB的中点,∴CD=AC=2,CE=AB=,∵⊙C的半径为3,BC=3,,,∴点B在⊙C上,点E在⊙C内,点D在⊙C内,点A在⊙C外,故选:D.【点睛】本题考查点与圆的位置关系,解题的关键是求点到圆心的距离.7、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.8、B【分析】连接OC,作OE⊥CD,根据垂径定理和勾股定理求解即可.【详解】解:连接OC,作OE⊥CD,如图3,∵AB=4分米,∴OC=2分米,∵将圆环进行翻折使点B落在圆心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故选:B.【点睛】此题综合运用了勾股定理以及垂径定理.注意构造由半径、半弦、弦心距组成的直角三角形进行有关的计算.9、D【解析】试题分析:根据相似三角形面积的比等于相似比的平方解答即可.解:∵△ABC∽△DEF,相似比为2:1,∴△ABC和△DEF的面积比为4:1,又△DEF的面积为4,∴△ABC的面积为1.故选D.考点:相似三角形的性质.10、C【解析】分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.详解:根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.二、填空题(每小题3分,共24分)11、(2326,0)【分析】根据题意连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移2.由于2029=336×6+3,因此点向右平移2322(即336×2)即可到达点,根据点的坐标就可求出点的坐标.【详解】解:连接AC,如图所示:∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=2,∴AC=2.画出第5次、第6次、第7次翻转后的图形,如上图所示.由图可知:每翻转6次,图形向右平移2.∵2029=336×6+3,∴点向右平移2322(即336×2)到点.∵的坐标为(2,0),∴的坐标为(2+2322,0),∴的坐标为(2326,0).故答案为:(2326,0).【点睛】本题考查菱形的性质、等边三角形的判定与性质等知识,考查操作、探究、发现规律的能力,发现“每翻转6次,图形向右平移2”是解决本题的关键.12、3.【分析】首先根据平行四边形的性质,得出AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC,又由BF是∠ABC的角平分线,可得∠ABF=∠CBF,∠BFC=∠CBF,进而得出CF=BC,即可得出DF.【详解】,解:∵在□ABCD中,AB=4cm,AD=7cm,∴AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC又∵BF是∠ABC的角平分线∴∠ABF=∠CBF∴∠BFC=∠CBF∴CF=BC=7cm∴DF=CF-CD=7-4=3cm,故答案为3.【点睛】此题主要利用平行四边形的性质,熟练运用即可解题.13、1【解析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得,第1个图象中〇的个数为:,第2个图象中〇的个数为:,第3个图象中〇的个数为:,第4个图象中〇的个数为:,……∴第2019个图形中共有:个〇,故答案为:1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.14、【解析】试题分析:根据抛物线解析式可知其对称轴为x=,根据其与x轴只有一个交点,可知其顶点在x轴上,因此可知x=时,y=0,代入可求得m=.点睛:此题主要考查了二次函数的图像与性质,解题关键是明确与x轴只有一个交点的位置是抛物线的顶点在x轴上,因此可求出对称轴代入即可.15、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.16、2【分析】先求出10户居民平均月使用塑料袋的数量,然后估计500户家庭每月一共使用塑料袋的数量即可.【详解】解:10户居民平均月使用塑料袋的数量为:(65+70+85+74+86+78+74+92+82+1)÷10=80,∴500×80=2(只),故答案为2.【点睛】本题考查统计思想,用样本平均数估计总体平均数,10户居民平均月使用塑料袋的数量是解答本题的关键.17、【分析】如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根据,设AB=l=2a,OA=r=3a,根据等量代换得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表达出,代入计算即可.【详解】解:如图所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴设AB=l=2a,OA=r=3a,过点A作AE⊥OB于点E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案为:.【点睛】本题考查了垂径定理以及锐角三角函数的定义,解题的关键是熟练掌握垂径定理的内容,作出辅助线,求出AE的值.18、()【分析】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,根据已知条件求出OC和OB的长即可.【详解】连接OB,过O作OH⊥BC于H,过O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四边形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在这一过程中,窗框上的点到地面的最大高度为(+1)m,故答案为:(+1).【点睛】本题考查了垂径定理,矩形的性质和判定,勾股定理,掌握知识点是解题关键.三、解答题(共66分)19、.【分析】先根据题意画出树状图,然后由树状图求得所有等可能的结果.【详解】解:画树状图如下:共有9种等可能的结果数,其中两次摸出的球的颜色相同的结果数为3,所以过关的概率是=.【点睛】本题的考点是树状图法.方法是根据题意画出树状图,由树状图得出答案.20、(1)1980;(2)w=﹣5(x﹣1)2+180,w有最大值是680元;(3)112元【分析】(1)当3≤x<16时,设p与x的关系式为p=kx+b,当x=11时,代入解析式求出p的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可;(3)当x=15时代入(2)的解析式求出p的值,再当x=15时代入(1)的解析式求出y的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p与x之间的函数关系式为p=kx+b依题意得把(3,30),(16,17)代入,解得∴p=﹣x+33当x=11时,p=22所以90×22=1980答:第11天的日销售额w为1980元.故答案为1980;(2)当11≤x≤20时设y与x之间的函数关系式为y=k1x+b1,依题意得把(20,0),(11,90)代入得解得∴y=﹣10x+200当16≤x≤20时设p与x之间的函数关系式为:p=k2x+b2依题意得,把(16,17),(20,19)代入得解得k2=,b2=9:∴p=x+9w=py=(x+9)(﹣10x+200)=﹣5(x﹣1)2+1805∴当16≤x≤20时,w随x的增大而减小∴当x=16时,w有最大值是680元.(3)由(1)得当3≤x≤16时,p=﹣x+33当x=15时,p=﹣15+33=18元,y=﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解.21、(1)抛物线的解析式为y=﹣x2+2x+1;(2)点D坐标(2,1);(1)M坐标(1,0)或(,0)或(﹣,0)或(5,0)【分析】(1)利用待定系数法求函数解析式;(2)根据解析式先求出△AOC的面积,设点D(xD,yD),由直线BC的解析式表示点E的坐标,求出DE的长,再由△BCD的面积等于△AOC的面积的2倍,列出关于xD的方程得到点D的坐标;(1)设点M(m,0),点N(x,y),分两种情况讨论:当BD为边时或BD为对角线时,列中点关系式解答.【详解】解:(1)∵抛物线y=ax2+bx+1经过点A(﹣1,0),B(1,0),∴,解得:∴抛物线的解析式为y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴,与直线BC交于点E,∵抛物线y=﹣x2+2x+1,与y轴交于点C,∴点C(0,1),∴OC=1,∴S△AOC=×1×1=,∵点B(1,0),点C(0,1)∴直线BC解析式为y=﹣x+1,∵点D(xD,yD),∴点E(xD,﹣xD+1),yD=﹣xD2+2xD+1,∴DE=﹣xD2+2xD+1﹣(﹣xD+1)=﹣xD2+1xD,∴S△BCD=1=×DE×1,∵△BCD的面积等于△AOC的面积的2倍∴2=﹣xD2+1xD,∴xD=1(舍去),xD=2,∴点D坐标(2,1);(1)设点M(m,0),点N(x,y)当BD为边,四边形BDNM是平行四边形,∴BN与DM互相平分,∴,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴,∴m=1,当BD为边,四边形BDMN是平行四边形,∴BM与DN互相平分,∴,∴y=﹣1,∴﹣1=﹣x2+2x+1∴x=1±,∴,∴m=±,当BD为对角线,∴BD中点坐标(,),∴,,∴y=1,∴1=﹣x2+2x+1∴x=2(不合题意),x=0∴点N(0,1)∴m=5,综上所述点M坐标(1,0)或(,0)或(﹣,0)或(5,0).【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,动线、动图形与抛物线的结合问题,在(1)使以点B,D,M,N为顶点的四边形是平行四边形时,要分情况讨论:当BD为边时或BD为对角线时,不要有遗漏,平行四边形的性质:对角线互相平分,列中点坐标等式求得点M的坐标.22、(1),;(2);(3)或【分析】(1)根据图象可知x=1和3是方程的两根;(2)若方程ax2+bx+c=k有两个不相等的实数根,则k必须小于y=ax2+bx+c(a≠0)的最大值,据此求出k的取值范围;(3)根据题意作图,由图象即可得到抛物线在直线下方时的取值范围.【详解】(1)∵函数图象与轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为,;(2)∵二次函数的顶点坐标为(2,2),∴若方程有两个不相等的实数根,则的取值范围为.(3)∵抛物线与直线相交于,两点,由图象可知,抛物线在直线下方时的取值范围为:或.【点睛】本题主要考查了二次函数与不等式以及抛物线与x轴的交点的知识,解答本题的关键是熟练掌握二次函数的性质以及图象的特点,此题难度不大.23、(1)2;(2)见解析;(3)是,定值为8【分析】(1)运用勾股定理直接计算即可;(2)过作于点,过作于点,即可得到,然后判断,得到,则有即可;(3)同(2)的方法证出得到,得出即可.【详解】解:(1),∴AC的长为2;(2)如图所示,过作于点,过作于点,正方形,,,,且,四边形为正方形,四边形是矩形,,,,又,在和中,,,,矩形为正方形,(3)的值为定值,理由如下:矩形为正方形,,,四边形是正方形,,,,在和中,,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论