2023届江苏省南通市海安市曲塘镇数学九年级上册期末学业质量监测试题含解析_第1页
2023届江苏省南通市海安市曲塘镇数学九年级上册期末学业质量监测试题含解析_第2页
2023届江苏省南通市海安市曲塘镇数学九年级上册期末学业质量监测试题含解析_第3页
2023届江苏省南通市海安市曲塘镇数学九年级上册期末学业质量监测试题含解析_第4页
2023届江苏省南通市海安市曲塘镇数学九年级上册期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.42.下列各式由左到右的变形中,属于分解因式的是()A. B.C. D.3.如果点与点关于原点对称,则()A.8 B.2 C. D.4.如图,直线y=x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)5.下列事件中,为必然事件的是()A.购买一张彩票,中奖B.打开电视,正在播放广告C.任意购买一张电影票,座位号恰好是“排号”D.一个袋中只装有个黑球,从中摸出一个球是黑球6.如图,的直径,是的弦,,垂足为,且,则的长为()A.10 B.12 C.16 D.187.如图,AB为⊙O的弦,半径OC交AB于点D,AD=DB,OC=5,OD=3,则AB的长为()A.8 B.6 C.4 D.38.已知2x=5y(y≠0),则下列比例式成立的是()A. B. C. D.9.如图是一个正方体纸盒,在下面四个平面图形中,是这个正方体纸盒展开图的是()A. B. C. D.10.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是().A.中国女排一定会夺冠 B.中国女排一定不会夺冠C.中国女排夺冠的可能性比较大 D.中国女排夺冠的可能性比较小11.抛物线y=x2﹣2x+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)12.若正方形的外接圆半径为2,则其内切圆半径为()A.2 B. C. D.1二、填空题(每题4分,共24分)13.已知和时,多项式的值相等,则m的值等于______.14.若a是方程x2-x-1=0的一个根,则2a2-2a+5=________.15.如图,已知是直角,在射线上取一点为圆心、为半径画圆,射线绕点顺时针旋转__________度时与圆第一次相切.16.抛物线y=x2–6x+5的顶点坐标为__________.17.反比例函数()的图象经过点A,B(1,y1),C(3,y1),则y1_______y1.(填“<,=,>”)18.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB=2.将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,则平移距离为_____.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点M是AB边的中点.(1)如图1,若CM=,求△ACB的周长;(2)如图2,若N为AC的中点,将线段CN以C为旋转中心顺时针旋转60°,使点N至点D处,连接BD交CM于点F,连接MD,取MD的中点E,连接EF.求证:3EF=2MF.20.(8分)在一次数学兴趣小组活动中,阳光和乐观两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则阳光获胜,反之则乐观获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)游戏对双方公平吗?请说明理由.21.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=,样本成绩的中位数落在范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?22.(10分)甲、乙、丙三个球迷决定通过抓阄来决定谁得到仅有的一张球票.他们准备了三张纸片,其中一张上画了个五星,另两张空白,团成外观一致的三个纸团.抓中画有五角星纸片的人才能得到球票.刚要抓阄,甲问:“谁先抓?先抓的人会不会抓中的机会比别人大?”你认为他的怀疑有没有道理?谈谈你的想法并用列表或画树状图方法说明原因.23.(10分)如图,四边形ABCD内接于⊙O,∠1至∠6是六个不同位置的圆周角.(1)分别写出与∠1、∠2相等的圆周角,并求∠1+∠2+∠3+∠4的值;(2)若∠1-∠2=∠3-∠4,求证:AC⊥BD.24.(10分)关于的一元二次方程有两个实数根,求的取值范围.25.(12分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)2020281520253020121330251520101020172426“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表分组频数(单位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合计20请根据以上信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数.26.在一个不透明的口袋中装有3张相同的纸牌,它们分别标有数字3,﹣1,2,随机摸出一张纸牌不放回,记录其标有的数字为x,再随机摸取一张纸牌,记录其标有的数字为y,这样就确定点P的一个坐标为(x,y)(1)用列表或画树状图的方法写出点P的所有可能坐标;(2)写出点P落在双曲线上的概率.

参考答案一、选择题(每题4分,共48分)1、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵∴抛物线开口向上,对称轴为直线x=−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x=−1,∴当x>−1时,y随x的增大而增大,∴当x>1时,y随x的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.2、C【解析】根据题中“属于分解因式的是”可知,本题考查多项式的因式分解的判断,根据因式分解的概念,运用因式分解是把多项式分解成若干个整式相乘的形式,进行分析判断.【详解】A.属于整式乘法的变形.B.不符合因式分解概念中若干个整式相乘的形式.C.运用提取公因式法,把多项式分解成了5x与(2x-1)两个整式相乘的形式.D.不符合因式分解概念中若干个整式相乘的形式.故应选C【点睛】本题解题关键:理解因式分解的概念是把多项式分解成若干个整式相乘的形式,注意的是相乘的形式.3、C【分析】根据两个点关于原点对称时,它们横坐标对应的符号、纵坐标对应的符号分别相反,可直接得到m=3,n=-5进而得到答案.【详解】解:∵点A(3,n)与点B(-m,5)关于原点对称,

∴m=3,n=-5,

∴m+n=-2,

故选:C.【点睛】此题主要考查了关于原点对称点的坐标特点,关键是掌握点的坐标的变化规律.4、A【分析】根据一次函数解析式可以求得,,根据平面直角坐标系里线段中点坐标公式可得,,根据轴对称的性质和两点之间线段最短的公理求出点关于轴的对称点,连接,线段的长度即是的最小值,此时求出解析式,再解其与轴的交点即可.【详解】解:,,,,同理可得点关于轴的对称点;连接,设其解析式为,代入与可得:,令,解得..【点睛】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.5、D【分析】根据必然事件的概念对各选项分析判断即可.【详解】解:A、购买一张彩票,有可能中奖,也有可能不中奖,是随机事件,故A不合题意;B、打开电视,可能正在播放广告,也可能在播放其他节目,是随机事件,故B不合题意;C、购买电影票时,可能恰好是“7排8号”,也可能是其他位置,是随机事件,故C不合题意;D、从只装有5个黑球的袋子中摸出一个球,摸出的肯定是黑球,是必然事件,故D符合题意;故选D.【点睛】本题主要考查确定事件;在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫做必然发生的事件,简称必然事件.6、C【分析】连接OC,根据圆的性质和已知条件即可求出OC=OB=,BE=,从而求出OE,然后根据垂径定理和勾股定理即可求CE和DE,从而求出CD.【详解】解:连接OC∵,∴OC=OB=,BE=∴OE=OB-BE=6∵是的弦,,∴DE=CE=∴CD=DE+CE=16故选:C.【点睛】此题考查的是垂径定理和勾股定理,掌握垂径定理和勾股定理的结合是解决此题的关键.7、A【分析】连接OB,根据⊙O的半径为5,CD=2得出OD的长,再由垂径定理的推论得出OC⊥AB,由勾股定理求出BD的长,进而可得出结论.【详解】解:连接OB,如图所示:∵⊙O的半径为5,OD=3,∵AD=DB,∴OC⊥AB,∴∠ODB=90°,∴BD=∴AB=2BD=1.故选:A.【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.8、B【解析】试题解析:∵2x=5y,∴.故选B.9、C【分析】根据图中符号所处的位置关系作答.【详解】解:从立体图形可以看出这X,菱形和圆都是相邻的关系,故B,D错误,当x在上面,菱形在前面时,圆在右边,故A错误,C正确.故选C.【点睛】此题主要考查了展开图折叠成几何体,动手折叠一下,有助于空间想象力的培养.10、C【分析】概率越接近1,事件发生的可能性越大,概率越接近0,则事件发生的可能性越小,根据概率的意义即可得出答案.【详解】∵中国女排夺冠的概率是80%,∴中国女排夺冠的可能性比较大故选C.【点睛】本题考查随机事件发生的可能性,解题的关键是掌握概率的意义.11、C【分析】把抛物线解析式化为顶点式可求得答案.【详解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴顶点坐标为(1,2),故选:C.【点睛】本题考查了抛物线的顶点坐标的求解,解题的关键是熟悉配方法.12、B【解析】试题解析:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,故选B.二、填空题(每题4分,共24分)13、或1【分析】根据和时,多项式的值相等,得出,解方程即可.【详解】解:和时,多项式的值相等,,化简整理,得,,解得或1.故答案为或1.【点睛】本题考查多项式以及代数式求值,正确理解题意是解题的关键.14、1【分析】根据一元二次方程的解的定义,将x=a代入方程x2-x-1=0,列出关于a的一元二次方程,通过解方程求得a2-a的值后,将其整体代入所求的代数式并求值即可.【详解】根据题意,得a2-a-1=0,即a2-a=1;∴2a2-2a+5=2(a2-a)+5=2×1+5=1,即2a2-2a+5=1.故答案是:1.【点睛】此题主要考查了方程解的定义.此类题型的特点是,利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.15、60【分析】根据题意,画出旋转过程中,与圆相切时的切线BA1,切点为D,连接OD,根据切线的性质可得∠ODB=90°,然后根据已知条件,即可得出∠OBD=30°,从而求出旋转角∠ABA1.【详解】解:如下图所示,射线BA1为射线与圆第一次相切时的切线,切点为D,连接OD∴∠ODB=90°根据题意可知:∴∠OBD=30°∴旋转角:∠ABA1=∠ABC-∠OBD=60°故答案为:60【点睛】此题考查的是切线的性质和旋转角,掌握切线的性质是解决此题的关键.16、(3,-4)【解析】分析:利用配方法得出二次函数顶点式形式,即可得出二次函数顶点坐标.详解:∵y=x2﹣6x+5=(x﹣3)2﹣4,∴抛物线顶点坐标为(3,﹣4).故答案为(3,﹣4).点睛:此题考查了二次函数的性质,求抛物线的顶点坐标可以先配方化为顶点式,也可以利用顶点坐标公式()来找抛物线的顶点坐标.17、>【分析】根据反比例函数的性质得出在每个象限内,y随x的增大而减小,图象在第一、三象限内,再比较即可.【详解】解:由图象经过点A,可知,反比例函数图象在第一、三象限内,y随x的增大而减小,由此可知y1>y1.【点睛】本题考查反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.18、1或1【分析】过点P作PC⊥x轴于点C,连接PA,由垂径定理得⊙P的半径为2,因为将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,分两种情况进行讨论求值即可.由【详解】解:过点P作PC⊥x轴于点C,连接PA,AB=,,点P的坐标为(1,-1),PC=1,,将⊙P沿着与y轴平行的方向平移,使⊙P与轴相切,①当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为1即可;②当沿着y轴正方向移动,由①可知平移的距离为3即可.故答案为1或1.【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可.三、解答题(共78分)19、(1);(2)证明见解析.【分析】(1)根据直角三角形中,斜边上的中线等于斜边的一半可得AB的长度,根据30°所对的直角边等于斜边的一半可得BC的长度,最后根据勾股定理可得AC的长度,计算出周长即可;(2)如图所示添加辅助线,由(1)可得ΔBCM是等边三角形,可证ΔBCP≌ΔCMN,进而证明ΔBPF≌ΔDCF,根据E是MD中点,得出,根据BPMC,得出,进而得出3EF=2MF即可.【详解】解:(1)在Rt△ABC中,∠ACB=90°,点M是AB边的中点,∴∴AB=2MC=,又∵∠A=30°,∴由勾股定理可得,∴△ABC的周长为++6=(2)过点B作BPMC于P∵∠ACB=90°,∠A=30°,∴∵M为AB的中点,∴∴∵∠ABC=60°∴ΔBCM是等边三角形∴∠CBP=∠MCN=30°,BC=CM∴在ΔBCP与ΔCMN中∴ΔBCP≌ΔCMN(AAS)∴BP=CN∵CN=CD∴BP=CD∵∠BPF=∠DCF=90°∠BFP=∠DFC∴ΔBPF≌ΔDCF∴PF=FCBF=DF∵E是MD中点,∴∵BPMC,∴∴,∴∴【点睛】本题考查含30°直角三角形的性质、全等三角形的性质与判定、旋转的性质,解题的关键是能够综合运用上述几何知识进行推理论证.20、(1)见解析,两数和共有12种等可能结果;(2)游戏对双方公平,见解析【分析】(1)根据题意列出表格,得出游戏中两数和的所有可能的结果数;(2)根据(1)得出两数和共有的情况数和其中和小于12的情况数,再根据概率公式分别求出阳光和乐观获胜的概率,然后进行比较即可得出答案.【详解】解:(1)根据题意列表如下:678939101112410111213511121314可见,两数和共有12种等可能结果;(2)∵两数和共有12种等可能的情况,其中和小于12的情况有6种,∴阳光获胜的概率为∴乐观获胜的概率是,∵=,∴游戏对双方公平.【点睛】解决游戏公平问题的关键在于分析事件发生的可能性,即比较游戏双方获胜的概率是否相等,若概率相等,则游戏公平,否则不公平.21、(1)8,20,2.0≤x<2.4;(2)补图见解析;(3)该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.【解析】(1)根据题意和统计图可以求得a、b的值,并得到样本成绩的中位数所在的取值范围;(2)根据b的值可以将频数分布直方图补充完整;(3)用1000乘以样本中该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生比例即可得.【详解】(1)由统计图可得,a=8,b=50﹣8﹣12﹣10=20,样本成绩的中位数落在:2.0≤x<2.4范围内,故答案为:8,20,2.0≤x<2.4;(2)由(1)知,b=20,补全的频数分布直方图如图所示;(3)1000×=200(人),答:该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有200人.【点睛】本题考查了频数分布表、频数分布直方图、中位数等,读懂统计图与统计表,从中找到必要的信息是解题的关键.22、甲的怀疑没有道理,先抓后抓抓中的机会是一样的,图表见解析【分析】先正确画出树状图,根据树状图求出每人抓到五星的概率即可解答.【详解】答:甲的怀疑没有道理,先抓后抓抓中的机会是一样的.用树状图列举结果如下:从图中发现无论三个人谁先抓阄,抓到五星纸片的概率都是一样的,各为.【点睛】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23、(1)∠6=∠1,∠5=∠2,1°;(2)详见解析【分析】(1)根据圆的性质可得出与∠1、∠2相等的圆周角,然后计算∠1+∠2+∠3+∠4可得;(2)先得出∠1+∠4=90°,从而得出∠6+∠4=90°,从而证垂直.【详解】(1)∵∠1和∠6所对应的圆弧相同,∴∠1=∠6同理,∠2=∠∠5∵∠1=∠6,∠2=∠5∴∠1+∠2+∠3+∠4=∠6+∠5+∠3+∠4=1°;(2)∵∠1-∠2=∠3-∠4∴∠1+∠4=∠2+∠3∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论