




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,、分别与相切于、两点,点为上一点,连接,,若,则的度数为()A. B. C. D.2.如图,∠AOB是放置在正方形网格中的一个角,则tan∠AOB()A. B. C.1 D.3.抛物线如图所示,给出以下结论:①,②,③,④,⑤,其中正确的个数是()A.2个 B.3个 C.4个 D.5个4.用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是()A. B. C. D.5.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=06.在△ABC中,若tanA=1,sinB=,你认为最确切的判断是()A.△ABC是等腰三角形 B.△ABC是等腰直角三角形C.△ABC是直角三角形 D.△ABC是一般锐角三角形7.如图,⊙O的弦CD与直径AB交于点P,PB=1cm,AP=5cm,∠APC=30°,则弦CD的长为()A.4cm B.5cm C.cm D.cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180° C.240° D.300°9.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7 C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣2510.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.2411.方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,则m的值为()A.任何实数. B.m≠0 C.m≠2 D.m≠﹣212.如图,在△ABC中E、F分别是AB、AC上的点,EF∥BC,且,若△AEF的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.18二、填空题(每题4分,共24分)13.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.14.若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝1.15.如图,抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3…An,将抛物线y=x2沿直线L:y=x向上平移,得到一系列抛物线,且满足下列条件:①抛物线的顶点M1,M2,M3,…Mn都在直线L:y=x上;②抛物线依次经过点A1,A2,A3…An,则顶点M2020的坐标为_____.16.如图,一架长为米的梯子斜靠在一竖直的墙上,这时测得,如果梯子的底端外移到,则梯子顶端下移到,这时又测得,那么的长度约为______米.(,,,)17.若两个相似三角形的面积比是9:25,则对应边上的中线的比为_________.18.若反比例函数的图象在每一象限内,y随x的增大而增大,请写出满足条件的一个反比例函数的解折式___________.三、解答题(共78分)19.(8分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E,(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.20.(8分)如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD=CE.21.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?22.(10分)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系.(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?23.(10分)如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,(1)求证:△EBC是等腰三角形;(2)已知:AB=7,BC=5,求的值.24.(10分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?25.(12分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数)26.如图,在Rt△ABC中,∠C=90°,过AC上一点D作DE⊥AB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE.
参考答案一、选择题(每题4分,共48分)1、C【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB的度数,然后根据圆周角定理计算∠ACB的度数.【详解】解:连接、,∵、分别与相切于、两点,∴,,∴.∴,∴.故选C.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.2、C【分析】连接AB,分别利用勾股定理求出△AOB的各边边长,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【详解】解:连接AB如图,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故选C【点睛】本题考查了在正方形网格中,勾股定理及勾股定理逆定理的应用.3、D【分析】根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,再根据与x轴的交点坐标代入分析即可得到结果;【详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴ab<0,故①②正确;当x=-1时,,故③正确;当x=1时,根据图象可得,故④正确;根据函数图像与x轴有两个交点可得,故⑤正确;故答案选D.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析每一个数据是解题的关键.4、B【解析】列表如下:红红蓝红紫蓝紫紫共有9种情况,其中配成紫色的有3种,所以恰能配成紫色的概率=故选B.5、B【解析】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.6、B【分析】试题分析:由tanA=1,sinB=结合特殊角的锐角三角函数值可得∠A、∠B的度数,即可判断△ABC的形状.【详解】∵tanA=1,sinB=∴∠A=45°,∠B=45°∴△ABC是等腰直角三角形故选B.考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.7、D【分析】作OH⊥CD于H,连接OC,如图,先计算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.8、B【详解】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选B.考点:圆锥的计算9、C【分析】直接利用配方法进而将原式变形得出答案.【详解】y=x2-8x-9=x2-8x+16-1=(x-4)2-1.故选C.【点睛】此题主要考查了二次函数的三种形式,正确配方是解题关键.10、C【分析】根据用频率估计概率可知:摸到白球的概率为0.25,根据概率公式即可求出小球的总数,从而求出红球的个数.【详解】解:小球的总数约为:6÷0.25=24(个)则红球的个数为:24-6=18(个)故选C.【点睛】此题考查的是用频率估计概率和根据概率求小球的总数,掌握概率公式是解决此题的关键.11、C【分析】根据二次项系数不为0列出不等式,解不等式得到答案.【详解】∵方程(m﹣2)x2+mx﹣1=0是关于x的一元二次方程,∴m﹣2≠0,解得,m≠2,故选:C.【点睛】本题考查了一元一次方程的应用问题,掌握一元一次方程的性质以及应用是解题的关键.12、C【解析】解:∵,∴,∵EF∥BC,∴△AEF∽△ABC,∴,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC-S△AEF=18-2=1.故选C.【点睛】本题考查相似三角形的判定与性质,难度不大.二、填空题(每题4分,共24分)13、-1【分析】直接根据两根之和的公式可得答案.【详解】∵a、b是一元二次方程x2+x﹣1=0的两根,∴a+b=﹣1,故答案为:﹣1.【点睛】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.14、14【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=ab=×6×8=14cm1,故答案为14.15、(4039,4039)【分析】根据抛物线的解析式结合整数点的定义,找出点An的坐标为(n,n2),设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x-a)2+a,由点An的坐标利用待定系数法,即可求出a值,将其代入点Mn的坐标即可得出结论.【详解】∵抛物线y=x2在第一象限内经过的整数点(横坐标、纵坐标都为整数的点)依次为A1,A2,A3,…,An,…,∴点An的坐标为(n,n2).设点Mn的坐标为(a,a),则以点Mn为顶点的抛物线解析式为y=(x﹣a)2+a,∵点An(n,n2)在抛物线y=(x﹣a)2+a上,∴n2=(n﹣a)2+a,解得:a=2n﹣1或a=0(舍去),∴Mn的坐标为(2n﹣1,2n﹣1),∴M2020的坐标为(4039,4039).故答案为:(4039,4039).【点睛】本题考查了二次函数图象与几何变换、一次函数图象上点的坐标特征以及待定系数法求二次函数解析式,根据点An的坐标利用待定系数法求出a值是解题的关键.16、【分析】直接利用锐角三角函数关系得出,的长,进而得出答案.【详解】由题意可得:∵,,,解得:,∵,,,解得:,则,答:的长度约为米.故答案为.【点睛】此题主要考查了解直角三角形的应用,正确得出,的长是解题关键.17、3:1【分析】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比是9:21∴两个相似三角形的相似比是3:1∴对应边上的中线的比为3:1故答案为:3:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.18、【分析】根据反比例函数的性质:当k>0时函数图像的每一支上,y随x的增大而减少;当k<0时,函数图像的每一支上,y随x的增大而增大,因此符合条件的反比例函数满足k<0即可.【详解】因为反比例函数的图象在每一象限内,y随x的增大而增大,所以k<0故答案为:【点睛】本题考查的是反比例函数的性质,掌握反比例函数的增减性是关键.三、解答题(共78分)19、(1)见解析(2)2:1【分析】(1)连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线.(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.【详解】解:(1)证明:连接DO,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO.∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS).∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴AD:OC=DE:CE=2:1.20、见解析【解析】试题分析:作BF∥AC交EC于F,通过证明△FBC≌△DBC,得到CD=CF,根据三角形中位线定理得到CF=CE,等量代换得到答案.试题解析:证明:作BF∥AC交EC于F.∵BF∥AC,∴∠FBC=∠ACB.∵AB=AC,∴∠ABC=∠ACB,∴∠FBC=∠ABC.∵BF∥AC,BE=AB,∴BF=AC,CF=CE.∵CD是AB边上的中线,∴BD=AB,∴BF=BD.在△FBC和△DBC中,∵BF=BD,∠FBC=∠DBC,BC=BC,∴△FBC≌△DBC,∴CD=CF,∴CD=CE.点睛:本题考查的是三角形中位线定理、全等三角形的判定和性质以及等腰三角形的性质,正确作出辅助线、灵活运用定理是解题的关键.21、该单位这次共有30名员工去风景区旅游【分析】设该单位这次共有x名员工去风景区旅游,因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500;【详解】解:设该单位这次共有x名员工去风景区旅游因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500,整理,得x2-65x+1050=0,解得x1=35,x2=30当x1=35时,500-10(x-15)=300<320,故舍去x1;当x2=30时,500-10(x-15)=350>320,符合题意答:该单位这次共有30名员工去风景区旅游【点睛】考核知识点:二元一次方程应用.理解题是关键.22、(1);(2),售价定为140元∕件,每天获得最大利润为1600元【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于kb的关系式,求出k、b的值即可;(2)把每天的利润W与销售单价x之间的函数关系式化为二次函数顶点式的形式,由此关系式即可得出结论.【详解】解:解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:,故y与x的函数关系式为;(2)∵,∴W===,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.【点睛】本题考查的是二次函数的应用,根据题意列出关于k、b的关系式是解答此题的关键.23、(1)证明见解析(1)【解析】试题分析:(1)欲证明△EBC是等腰三角形,只需推知BC=BE即可,可以由∠1=∠3得到:BC=BE;(1)通过相似三角形△COD∽△EOB的对应边成比例得到,然后利用分式的性质可以求得.解:(1)∵四边形ABCD是平行四边形,∴CD∥AB,∴∠1=∠1.∵CE平分∠BCD,∴∠1=∠3,∴∠1=∠3,∴BC=BE,∴△EBC是等腰三角形;(1)∵∠1=∠1,∠4=∠5,∴△COD∽△EOB,∴=.∵平行四边形ABCD,∴CD=AB=2.∵BE=BC=5,∴==,∴=.点睛:本题考查了平行四边形的性质,相似三角形的判定与性质以及等腰三角形的判定.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在运用三角形相似的性质时主要利用相似比计算相应线段的长.24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 巧学计算机一级WPS考试精典试题及答案
- 风险管理在企业决策中的重要性试题及答案
- Python基础概念总结与回顾试题及答案
- 2025年促销牌项目市场调查研究报告
- 数据类型转换C++试题及答案考察
- 错题本的计算机二级试题及答案
- 汉语语法结构详解与练习试题及答案
- Web开发的未来趋势试题及答案
- 2025年计算机二级基础知识备考试题及答案
- 财务决策分析中的逻辑思维技巧试题及答案
- 树木移栽施工协议书
- 手术前抗凝药停用时间
- 租地解除合同协议书
- 2025湖北水发集团园招聘40人笔试参考题库附带答案详解
- 室外消防钢丝网骨架塑料复合PE管施工方案
- 2025年武汉数学四调试题及答案
- 2025年武汉铁路局招聘笔试参考题库含答案解析
- 2024年全国高中数学联赛北京赛区预赛一试试题(解析版)
- 建筑地基基础检测规范DBJ-T 15-60-2019
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 工程联系单表格(模板)
评论
0/150
提交评论