版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter10ChannelCodingandErrorControl10.1IntroductionChannelcoding:Purpose:
toimprovethereliabilityofsignaltransmission.Method:toaddsomeredundantbitsinordertodiscoverorcorrecterrors.
Errorcontrol:allerrorcorrectionmeasuresincludingchannelcoding.Causationsforproducingerrorsymbols:Intersymbolinterferenceevokedbymultiplicativeinterference.Signaltonoiseratioreductioncausedbyadditiveinterference.
1Classificationofchannels:accordingtothestatisticalcharacteristicsoftheerrorsymbolscausedbyadditiveinterference,Randomchannel:Errorsymbolsoccurrandomly,e.g.,errorsymbolscausedbyadditivenoise.
Burstchannel:theoccurrenceisrelativelyconcentrated,e.g.,theerrorsymbolscausedbypulseinterference.
Mixedchannel2KindsoferrorcontroltechniquesErrordetectionandretransmission:Theerrorsymbolscanbediscovered,butthelocationsoftheerrorscan’tbedetermined.Thecommunicationsystemsneedtohavethebidirectionalchannels.
FEC:utilizestheerrorcontrolsymbolsattachednotonlytodiscovertheerrorsymbols,butalsotocorrecttheerrorsymbols.Feedbackcheck:Thereceivedsymbolswillbereturnedtothetransmitterforcomparisonofthemwiththeoriginaltransmittedsymbols.Disadvantages:needofbidirectionalchannelandratherlowtransmissionefficiency.3Errordetectionanddeletion:Whentheerrorsymbolsarediscoveredinthereceiver,theywillbedeletedimmediately.Itissuitableonlyinsystemswherealotofredundancyexistsinthetransmittingsymbols,andthedeletedpartofthereceivedsymbolsdoesn’tinfluencetheapplication.
4Parametersofthecodesequencen-totalnumberofsymbolsinthecodesequencek-numberofinformationsymbolsinthecodesequencer
-numberoferrorcontrolsymbolsinthecodesequencek/n
-coderate(n-k)/k=r/k-redundancy5ARQsystemStop-and-waitARQ
systemPullbackARQ
systemStop-and-waitARQsystemReceiveddataACKACKNAKACKACKNAKACK1233455tTransmittingdata12334556tBlockinerrorBlockinerrorPullbackARQsystem214365798ReceiveddataBlockinerrorBlockinerror91011101112576ACK1NAK5NAK9ACK55769521436798Transmittingdata1011101112RetransmittedblockRetransmittedblock6SelectiverepeatARQ
systemARQincomparisonwithFECAdvantagesLessparitysymbols,highercoderateThecalculationcomplexityoferrordetectionislow.ItcanadaptthedifferentcharacteristicsofthechannelsDisadvantagesItrequiresduplexchannels
cannotbeusedintheunidirectioncommunicationsystemsorbroadcastingsystems.Thetransmissionefficiencyisdecreasedduetoretransmission.Whenthechannelinterferenceisserious,communicationisvirtuallyinterrupted.
SelectiverepeatARQsystem9ReceiveddataBlockinerrorBlockinerror21436575981011131412Transmittingdata995852143671011131412RetransmittedblockRetransmittedblockNAK9ACK1NAK5ACK5ACK9710.2BasicPrinciplesofErrorControlCodingBlockcode–asanexampleAssume:thereisacodecomposedof3binarysymbols,sothereare23=8differentpossiblecodewords:
000–fine 001–cloud 010–overcast011–rain 100–snow101–frost 110–fog 111–hail
Now,iftheerrorsymbolsoccur,thenerrorinformationwillbereceived.Ifonly4codewordsamongthese8codewordsareallowedtobeusedfortransmissionoftheweather,e.g.,let
000–fine011–cloud101–overcast110–rain
arepermissioncodewords,
other4kindsareforbiddencodewords.
Then,thereceivercandetectoneerrorsymbolinacodeword.Thiscodecanonlydetecttheerrorsymbols,andcannotcorrecttheerrorsymbols.
8Ifonlytwopermissioncodewordsaredefined:
forexample
000–fine111–rain
thenthecodecandetectatmosttwoerrorsymbols,orcorrectoneerrorsymbol.
9ConceptofblockcodeBlockcodeword=informationbits+checkbitsExpressionofblockcode:(n,k) where
n-totallengthofcodeword
k-numberofinformationbits
r=n–k
-numberofofcheckbits
Thecodewordinthetableisa(3,2)code.InformationbitsCheckbitsFine000Cloud011Overcast101Rain11010Structureofblockcode:Parametersofblockcode:Codeweight:numberof1sinthecodewordCodedistance:thenumberofbitswhichhavedifferentvaluesinthecorrespondinglocationsoftwocodewords,andalsocalledHammingdistanceMinimumcodedistance
(d0):minimumdiatanceamongthecodewordskinformationbitsrcheckbitsan-1an-2...arar-1an-2...a0tCodelengthn=k+r11Geometicmeaningofcodedistance:byusingacodewithn=3
asexampleGeneralspeaking,codedistanceistheHammingdistancebetweenthevertexesofaunitregularpolyhedroninanndimensionalspace.(0,0,0)(0,0,1)(1,0,1)(1,0,0)(1,1,0)(0,1,0)(0,1,1)(1,1,1)a2a0a112Errorcorrectionanddetectionabilitiesofacodearedecidedbytheminimumcodedistance
d0
.Fordetectinge
errorsymbols,requireForcorrecting
terrorsymbols,
requireed00123BAHammingdistanceTwocodewordswithcodedistance3tAtd0B301245Twocodewordswithcodedistance5Hammingdistance13Forcorrectingt
errorsymbols,anddetectinge
errorsymbolsatthesametime,require
Errorcorrectionanddetectioncombinationmode:Whenthenumberoferrorsymbolsissmall,thesystemoperatesaccordingtotheFECmodesoastosaveretransmissiontimeandimprovetransmissionefficiency.
Whenthenumberoftheerrorsymbolsislarge,thesystemoperatesaccordingto
errordetectionwithretransmissionmodesoastoreducethetotalbiterrorprobability.
HammingdistanceABe1tt(c)Twocodewordswithcodedistance(e+t+1)1410.3PerformanceofErrorCorrectionSystem10.3.1Relationshipbetweenerrorsymbolprobabilityand bandwidth
Adoptingerror-correctioncodingfordecreaseoferrorsymbolprobability,thepricepaidisincreaseofbandwidth.10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)1510.3.2Relationshipbetweenpowerandbandwidth Iftheerrorsymbolprobabilityiskeptunchanged,whenthereiscodingforsavingpower,thenthepriceisstillthebandwidthincreased.
10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)16
10.3.3Relationshipbetweentransmissionrateandbandwidth
Foragiventransmissionsystem,therelationshipbetweenitstransmissionrateandEb/n0:
whereRB
-symbolrate.
Iftheerrorcorrectioncodingisusedtoincreasethetransmissionrateandkeeptheerrorsymbolprobabilityunchanged,thenthepricepaidisstilltheincreaseofthebandwidth.10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)1710.3.4Codinggain
Definition:Undertheconditionofconstanterrorsymbolprobability,thesignaltonoiseratioEb/n0savedbyusingerrorcorrectioncodingiscalledcodinggain
where(Eb/n0)u
-signaltonoiseratiobeforecoding(dB);
(Eb/n0)c
-necessarysignaltonoiseratioaftercoding
(dB)1810.4Parity-CheckCodes
10.4.1Onedimensionalparity-checkcodeOddparitycode-classifiedintooddparitycodeandeven paritycode.Intheparity-checkcode,thereisonlyonecheckbit,sothecoderateequalsk/(k+1).Intheevencheckcode,thecheckbitissodesignedthatthesummationofallthebitsinthecodewordyieldsanevenresult: wherea0
isthecheckbit,otherbitsareinformationbits.Thecheckbitinoddcheckcodesmakesthenumberof1sinthecodewordbeodd:19Errordetectionability-candetectodderrorsymbols.
Assume:
thelengthofthecodewordisn,andtheoccurrencesoferrorsymbolsinthecodewordareindependentandhaveequalprobability,thentheprobabilityofjerrorsymbolsthatoccurinacodewordis
where
—thenumberofcombinationsofjerrorsymbolsoccurredinn
codewords.Parity-checkcodescan’tdetectevenerrorsymbolsinacodeword,hencetheprobabilitythattheerrorsymbolsinacodewordcan’tbedetectedequals:
-when
niseven -when
n
isodd
20[Example]Thecodein thetableisaneven
paritycode.Assumethe
errorsymbolprobability ofthechannelis10-4,and
theoccurrencesoferror areindependent.
Calculate theundetectablesymbolerrorprobability.
Substitutingthegivenconditionintothecalculationresultis
Ascanbeseenfromtheresult,thiscodecanreducetheerrorsymbolprobabilityfromtheorderofmagnitude10-4to10-8.InformationbitCheckbitFine000Cloud011Overcast101Rain1102110.4.2Twodimensionalparity-checkcodeCoderateequalsCandetectevenerrorsymbols.SuitablefordetectingbursterrorsymbolsCancorrectapartoferrorsymbols………………………2210.5LinearBlockCodesBasicconceptAlgebraiccode-utilizationofalgebraicequationstogeneratetheparity-checkbits.Linearblockcode-therelationshipbetweentheparity-checkbitsandtheinformationbitsisdeterminedbylinearalgebraicequations.Hammingcode-akindoflinearblockcodes,whichcancorrectoneerrorsymbol.
syndrome:S
Ineverparitycheckcode,calculate
i.e.,practicallycalculate
andchecktheSisequalto0
ornot.
Siscalledsyndrome.Parity-checkrelationship:23BasicprinciplesoferrorcorrectionIn,Shasonlytwovalues,henceitcanonlyexpresserrorornoerror,butcan’tdeterminethelocationoftheerror.
Ifthelengthofthecodewordincreasesonebit,thus,twosyndromescanbeobtained.Thepossiblevaluesoftwosyndromeshave4combinations,i.e.,00,01,10,and11;hencetheycanexpress4differentkindsofinformation.Ifoneofthecombinationsisusedtoexpressnoerrorsymbol,thentheother3combinationscanbeusedtoindicate3differentlocationsofanerrorsymbol.Therefore,itmayhavetheabilityoferrorcorrection.24Generallyspeaking,iftherearerparity-checkrelationships,thenrsyndromescanindicate(2r–1)differentlocationsofanerrorsymbol.
Onlyifthenumberoferrorsymbollocationswhichcanbeindicatedbythesyndromesisequalto,orlargerthan,thelengthnofthecodeword,theerrorsymbolinanylocationofthecodewordcanbecorrected;i.e.,require25HammingcodeExample:Assumeitisrequiredtodesignablockcode(n,k)whichcancorrect1errorsymbol,andthereare4informationbitsinagivencodeword,i.e.,k=4.
From
Nowitisrequiredthatthenumberofparity-checkbitsr
3。Iflet
r=3,then
n=k+r=7.Here,
a6
a5
a4
a3
a2
a1
a0
areusedtoexpressthese
7symbols,andS1S2
S3
areusedtoexpresssyndromes,thenthe
3
syndromescanjustindicate23–1=7locationsoferrorsymbols.26IftherelationshipbetweenthesyndromesandthelocationsoftheerrorsymbolscanbedefinedbythefollowingTable,thenonlywhenthereiserrorsymbolinthelocationsa6
a5
a4
a2,thevalueofthesyndromeS1equals1;otherwise,thevalueofS1equalszero.Itmeansthatthe4symbolsa6
a5
a4anda2formevenparity-checkrelationship:Similarly,wehaveS1S2S3错码位置S1S2S3错码位置001a0101a4010a1110a5100a2111a6011a3000无错码27Duringcoding,thevaluesofinformationbitsa6
a5
a4
a3aredecidedbytheincomingsignal,whicharerandom.Theparity-checkbitsa2
a1
a0aredeterminedbytheparity-checkrelationship,andtheyshouldensurethatthesyndromesintheabove3equationsequalzero,i.e.,Iftheinformationbitshavebeengiven,thenforcalculationofparity-checkbitstheaboveequationcanbewrittenasTheresultofcalculationaccordingtotheaboveequationis:Informationbita6a5a4a3Checkbita2a1a0Informationbita6a5a4a3Checkbita2a1a0000000010001110001011100110000101011010010001111010110010100110110000101011011101010011001111101000111000111111128Duringdecodinginthereceiver,syndromesS1,S2,andS3arecalculatedaccordingto thenaccordingtothefollowingtabletodecidethelocationoftheerrorsymbol:
Example:Ifthereceivedcodewordis0000011,thenaccordingtotheabove3equationstheresultofcalculationis:
S1=0,S2=1,S3=1。Thus,accordingtothetable,thelocationoftheerrorsymbolisa3.S1S2S3LocationoferrorsymbolS1S2S3Locationoferrorsymbol001a0101a4010a1110a5100a2111a6011a3000无错码29Intheaboveexample,theHammingcodeisa(7,4)
code,itsminimumcodedistance
d0=3.Fromtheequation weknowthatthiscodecandetect2errorsymbols,orcorrect1errorsymbol.CoderateofHammingcode:
Whenr(orn)isverylarge,theaboveequationapproaches1.Therefore,Hammingcodesarehighefficientcodes.30GeneralprinciplesoflinearblockcodesTherelationshipbetweentheparity-checkbitsandtheinformationbitsoflinearblockcodes
canberewrittenas
intheaboveequation,
hasbeenwrittenas+forshort.
31Parity-checkmatrix:Theaboveequation
canberewrittenasthefollowingmatrixequation
(mod2)
Theaboveequationcanbesimplifiedas
HAT=0Tor
AHT=032
HAT=0T
where
-calledparity-checkmatrixPropertiesofparity-checkmatrixH
H
decidestherelationshipbetweeninformationbitsandparity-checkbitsinthecodeword.ThenumberofrowsofH
isthenumberofparity-checkequations,i.e.,thenumberofparity-checkbitsr.Thelocationsof1sineachrowofHindicatethatthecorrespondingsymbolsareinvolvedintheparity-checkequations.
A=[a6
a5
a4
a3
a2
a1
a0]
0=[000]33Hcanbedividedintotwoparts,e.g., -typicalparity-checkmatrixwherePisamatrixwiththeorderofr
k,andIr
isaunitsquarematrixwiththeorderofr
r.TherowsinanHmatrixshouldbelinearlyunrelated;otherwise,rlinearlyunrelatedparity-checkequationscannotbeobtainedIfamatrixcanbewrittenastypicalmatrix[PIr],thenitsrowsarecertainlylinearlyunrelated.34GeneratormatrixExample:
canbewrittenas
Aftertransposingthetwosidesoftheaboveequationseparately,itbecomeswhereQ
isamatrixwiththeorderofk
r,
itisthetranspositionofP
,i.e.,
Q=PT
35
Aunitsquarematrixwiththeorderofkisaddedtotheleft-handsideofQtoformthefollowingmatrix:
-calledgeneratormatrix
Giscalledgeneratormatrix,becauseitmaybeusedtogeneratethewholeofcodewords
A,i.e.,36PropertiesofgeneratormatrixGeneratormatrixwiththeformof[IkQ]iscalledtypicalgeneratormatrix.
InthecodewordAgivenbythetypicalgeneratormatrix,iftheparity-checkbitsareinsertedaftertheinformationbits,thenthecodeiscalledsystematiccode.
TherowsofmatrixGmustalsobelinearlyunrelated.
Iftherearealreadyklinearlyunrelatedcodewords,thentheycanbeusedasgeneratormatrixG,andothercodewordscanbegeneratedfromit.37Errorpattern
Assume:
thetransmittingcodeword
A
isarowmatrixwith
n
columns:
ThereceivedcodewordisarowmatrixBwithncolumns:
Letthedifferencebetweenthereceivedcodewordandthetransmittingcodewordbe
whereE
istherowmatrixoftheerrorsymbols.
-calledtheerrorpattern
where
(i=0,1,…,n-1) If
ei
=0,thenitexpressnoerror;ifei=1,thenitexpressthatthereisanerror.
B–A=E(mod2)38Syndromematrix
B–A=EcanberewrittenasB=A+E TheaboveequationshowsthatthesumofthetransmittingcodewordAandtheerrorsymbolmatrixEequalsthereceivedcodewordB.
Example:Ifthetransmittingcodeword
A=[1000111],theerrorsymbolmatrixE=[0000100],then
thereceivedcodewordB=[1000011].
39Duringdecodinginthereceiver,
substitutethereceivedcodeword
B
forthelocationofAinequation
AHT=0. Ifthereisnoerrorinthereceivedcodeword,thenE=0,B=A.Afterthesubstitution,theequationstillholds,i.e.:
BHT=0 Assumetheleft-handsideoftheequationequalsS,i.e.,
BHT=S Substituting
B=A+Eintotheaboveequation,obtain S=(A+E)HT=AHT+EHT40
S=(A+E)HT=AHT+EHTthefirsttermintheright-handsideoftheaboveequationequals0,therefore
S=EHT
-syndromematrix
WhenHhasbeendetermined,SintheaboveequationisonlyrelatedtoE,andisunrelatedtoA.
ThismeansthatthereisadefinitelineartransformrelationshipbetweenSanderrorsymbolsE.
IfSandEhaveaone-to-onecorrespondingrelationship,thenScanrepresentthelocationsoferrorsymbols.41Closenessoflinearcode:
IfA1andA2aretwocodewordsofalinearcode,then(A1+A2)isstillacodewordinthatlinearcode.『Proof』If
A1andA2aretwocodewords,thenwehave: A1HT=0,A2HT=0 Addingtheabovetwoequations,weobtain
A1HT+A2HT=(A1+A2)HT=0
Therefore(A1+A2)isalsoacodeword.
Sincethelinearcodehascloseness,thedistancebetweentwocodewords(A1andA2)mustbetheweight(i.e.,thenumberof“1”s)ofanothercodeword(A1+A2).Hence,theminimumdistanceofthecodeisjusttheminimumweightofthecode.4210.6Cycliccodes
10.6.1Conceptofcycliccodes
Cyclicityisdesignatedinawaythat
anycodewordobtainedbyanend-aroundshiftofacodewordinacodeisalsoacodewordinthiscode.
Example:
Allcodewordsofa
(7,3)cycliccodeareasfollows:
Ifthesecondcodewordinthistableshiftedonebittotheright,thenitwillbecomethefifthcodeword;ifthefifthcodewordcyclicshiftsonebittotheright,thenitwillbecometheseventhcodeword.No.ofcodewordInformationbitParity-checkbitNo.ofcodewordInformationbitParity-checkbita6a5a4a3a2a1a0a6a5a4a3a2a1a0100000005100101120010111610111003010111071100101401110018111001043Generalcondition
If(an-1
an-2…a0)isacodewordofacycliccode,thenthecodewordsaftercyclicshift
(an-2
an-3…a0
an-1) (an-3
an-4…an-1
an-2) …… (a0
an-1…a2
a1)arestillthecodewordsofthiscode.Polynomialexpression
Acodeword
(an-1
an-2…a0)withlengthncanbeexpressedas
xintheaboveequationhasnotanymeaning,andonlyitspowerisusedtorepresentthelocationofthesymbol.Forexample:thecodeword1100101
canbeexpressedas4410.6.2OperationofcycliccodesModulo-noperationofintegers
Thereismodulo-noperationintheintegeroperation.Forexample,inmodulo-2operation,thereare
1+1=20(mod2),1+2=31(mod2),23=60(mod2)
Generallyspeaking,ifanintegermcanbeexpressas
whereQisaninteger,theninmodulo-n
operation,
wehave
m
p(modn) Therefore,inmodulo-noperation,anintegermequalstheremainderresultingfromdividingitbyn.45Modulooperationofcodepolynomial
IfanarbitrarypolynomialF(x)isdividedbyapolynomialN(x)ofdegreen,theresultobtainedisaquotientQ(x)andaremainderR(x)ofdegreelessthann,i.e.,
TheninthearithmeticofmoduloN(x),wehave
Nowtheoperationofcoefficientsofcodepolynomialisstilldoneaccordingtomodulo-2.Forexample,x3isdividedby(x3+1),andtheremainderis1:
Example:
Since
x
x3+1x4+x2+1
x4+x
x2+x+1
Additionandsubtractionarethesameinmodulo-2operation.46Mathematicalexpressionofcycliccodes
Incycliccodes,letT(x)beacodewordwithlengthn,
if
thenT(x)isalsoacodewordofthatcode.
[Proof]Assumeacycliccodeisthenwehave
T(x)intheaboveequationistheresultofleft-handcyclicshiftitimesofthecodewordT(x).
Example:acycliccodewordis1100101,i.e.,
Iflet
i=3,thenwehave
Thecodewordcorrespondingtotheaboveequationis0101110.Itistheresultofleft-handshift3timesofT(x).Conclusion:
Acycliccodewordwithlengthnmustbearemainderofoperationmodulo-(xn+1).47GenerationofcycliccodesThewholecodewordcanbegeneratedfromthekinformationbits,ifwehavethegeneratormatrix
G.
Example:
where
EachrowofthegeneratorG
isacodeword.Hence,ifk
codewordshasbeenfound,thenwecanconstructG.Asmentionedabove,thekknowncodewordsmustbelinearlyunrelated.Incycliccodes,a(n,k)codehas2kdifferentcodewords.Ifg(x)expressesthecodeword,andtheforegoing(k-1)bitsofitareall0s,theng(x),xg(x),x2
g(x),,xk-1
g(x)areallcodewords,andthisk
codewordsarelinearunrelated.
Hence,theycanbeusedtoconstructG.48Inadditiontothecodewordofall0s,thereisnotanycodewordwhichhascontinuousk0sincycliccodes.Otherwise,afterseveralcyclicshifts,acodewordwherekinformationbitsareall0s,buttheparity-checkbitsarenotall0s,willbeobtained.Obviously,thisisimpossibleinlinearcodes.Hence,g(x)mustbea(n–k)degreepolynomial,theconstanttermofwhichisnotzero.Andthisg(x)istheonlypolynomialofdegree(n–k)inthis(n,k)code.Sinceifthereweretwo,thentheadditionofthesetwoshouldbealsoacodewordduetotheclosenessofthecode,andthedegreeofthepolynomialofthiscodewillbesmallerthan(n–k),i.e.,thenumberofcontinuous0sislargerthan(k–1).Obviously,thisiscontradictorytotheaboveconclusion.Thisexclusive(n–k)degreepolynomialg(x)iscalledgeneratorpolynomialofthecode.Onceg(x)isdetermined,thenthewhole(n,k)cycliccodeisdetermined.49Therefore,generatormatrixGof cycliccodescanbewrittenasExample:ThecodeintheaboveTableisa(7,3)cycliccode,whosen=7,k=3,andn–k=4.Theexclusive(n–k)=4degreecodepolynomialrepresentsthesecondcodeword,0010111;thecorrespondingcodepolynomial,i.e.thegeneratorpolynomial,isg(x)=x4+x2+x+1.No.ofcodewordInformationbitParity-checkbitNo.ofcodewordInformationbitParity-checkbita6a5a4a3a2a1a0a6a5a4a3a2a1a0100000005100101120010111610111003010111071100101401110018111001050
g(x)=x4+x2+x+1is“10111” Substitutingg(x)intotheabovematrix,obtain
or SincetheaboveequationdoesnotaccordwiththeformG=[IkQ],itisnotatypicalgeneratormatrix.However,afterlineartransformation,itisnotdifficulttobeconvertedtoatypicalgeneratormatrix.
51ThepolynomialexpressionT(x)ofthecycliccodewordis TheaboveequationilluminatesthatallcodepolynomialsT(x)canbedividedexactlybyg(x),andanarbitrarypolynomialofthedegreenotlargerthan(k–1)multipliesg(x)resultingacodepolynomial.52Findcodegeneratorpolynomial
SinceanarbitrarypolynomialT(x)ofacycliccodeisthemultipleofg(x),itcanbewrittenas
T(x)=h(x)g(x) andgeneratorpolynomialg(x)itselfisalsoacodeword,i.e.,
T
(x)=g(x) SincecodewordT
(x)isapolynomialofdegree(n–k),xkT
(x)isapolynomialofdegreen.Itisknownfrom
xk
T
(x)isalsoacodewordintheoperationof
modulo-(xn+1),sowehave
Thenumeratoranddenominatorintheleft-handsideoftheaboveequationarepolynomialsofdegreen,sothequotientofdivisionQ(x)=1.Hence,theaboveequationcanbewrittenas
53Substituting
T(x)=h(x)g(x)andT
(x)=g(x)into
Aftersimplifiedweobtain Theaboveequationilluminatesthatthegeneratorpolynomialg(x)shouldbeafactorof(xn+1).Forexample,(x7+1)canbedecomposedas
Tofindthegeneratorpolynomialg(x)of(7,3)cycliccode,itisnecessarytofindafactorofdegree(n–k)=4.Itisnotdifficulttoseethattherearetwosuchfactors,i.e.,
Theabovetwoequationsmaybethegeneratorpolynomial.
However,differentgeneratorpolynomialgeneratesdifferentcycliccodes.5410.6.3CodingofcycliccodesTomultiplym(x)byxn-k.Thisoperation,infact,istoattach(n–k)0stotheendoftheinformationbits.Forexample,iftheinformationbitsare110,thenitspolynomialism(x)=x2+x.Whenn–k=7–3=4,xn-km(x)=x4(x2+x)=x6+x5,anditexpressescodeword1100000.Todividexn-km(x)byg(x),theresultsarethequotientQ(x)andtheremainderr(x),i.e.,wehaveForexample,ifg(x)=x4+x2+x+1isgiven,thenwehave
Theaboveequationistheoperationexpressedbycodepolynomial.Itisequivalenttothefollowingequation:CodewordT(x)obtainedis:T(x)=xn-k
m(x)+r(x)
IntheaboveexampleT(x)=1100000+101=1100101 55
10.6.4DecodingofcycliccodesForerrordetection:Whenthereisnoerrorinthereceivedcodeword,thereceivedcodeword
R(x)canbeexactlydividedbyg(x);
i.e.,inth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度地产开发与销售合同3篇
- 2024年度栏杆装修工程合同书2篇
- 2024年度计算机软件开发与许可合同
- 2024年度化工企业安全生产许可证租赁合同3篇
- 2024年场地租用合同6篇
- 2024年个人信息保护安全合同范例版B版
- 2024年度环境治理与生态保护合作协议5篇
- 2024年国际海洋运输协议主体与义务一览
- 2024年二手车购买协议模板3篇
- 2024年企业股权融资协议模板一
- 2024《整治形式主义为基层减负若干规定》全文课件
- 医院感染预防与控制标准规范知识考试题库500题(含答案)
- 中国法律史-第三次平时作业-国开-参考资料
- 中国民族音乐作品鉴赏智慧树知到期末考试答案2024年
- 贵州省黔东南州2023-2024学年九年级上学期期末道德与法治试题
- 国家公祭日主题班会
- 简易精神状态检查量表(MMSE)
- 丽声北极星自然拼读绘本第三级 A Box for Me 课件
- 布病防治工作总结工作 布病总结报告(5篇)
- 银行自助设备运行管理规定
- 《大学生人际交往》PPT课件(完整版)
评论
0/150
提交评论