通信原理(英文版)第10章_第1页
通信原理(英文版)第10章_第2页
通信原理(英文版)第10章_第3页
通信原理(英文版)第10章_第4页
通信原理(英文版)第10章_第5页
已阅读5页,还剩81页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter10ChannelCodingandErrorControl10.1IntroductionChannelcoding:Purpose:

toimprovethereliabilityofsignaltransmission.Method:toaddsomeredundantbitsinordertodiscoverorcorrecterrors.

Errorcontrol:allerrorcorrectionmeasuresincludingchannelcoding.Causationsforproducingerrorsymbols:Intersymbolinterferenceevokedbymultiplicativeinterference.Signaltonoiseratioreductioncausedbyadditiveinterference.

1Classificationofchannels:accordingtothestatisticalcharacteristicsoftheerrorsymbolscausedbyadditiveinterference,Randomchannel:Errorsymbolsoccurrandomly,e.g.,errorsymbolscausedbyadditivenoise.

Burstchannel:theoccurrenceisrelativelyconcentrated,e.g.,theerrorsymbolscausedbypulseinterference.

Mixedchannel2KindsoferrorcontroltechniquesErrordetectionandretransmission:Theerrorsymbolscanbediscovered,butthelocationsoftheerrorscan’tbedetermined.Thecommunicationsystemsneedtohavethebidirectionalchannels.

FEC:utilizestheerrorcontrolsymbolsattachednotonlytodiscovertheerrorsymbols,butalsotocorrecttheerrorsymbols.Feedbackcheck:Thereceivedsymbolswillbereturnedtothetransmitterforcomparisonofthemwiththeoriginaltransmittedsymbols.Disadvantages:needofbidirectionalchannelandratherlowtransmissionefficiency.3Errordetectionanddeletion:Whentheerrorsymbolsarediscoveredinthereceiver,theywillbedeletedimmediately.Itissuitableonlyinsystemswherealotofredundancyexistsinthetransmittingsymbols,andthedeletedpartofthereceivedsymbolsdoesn’tinfluencetheapplication.

4Parametersofthecodesequencen-totalnumberofsymbolsinthecodesequencek-numberofinformationsymbolsinthecodesequencer

-numberoferrorcontrolsymbolsinthecodesequencek/n

-coderate(n-k)/k=r/k-redundancy5ARQsystemStop-and-waitARQ

systemPullbackARQ

systemStop-and-waitARQsystemReceiveddataACKACKNAKACKACKNAKACK1233455tTransmittingdata12334556tBlockinerrorBlockinerrorPullbackARQsystem214365798ReceiveddataBlockinerrorBlockinerror91011101112576ACK1NAK5NAK9ACK55769521436798Transmittingdata1011101112RetransmittedblockRetransmittedblock6SelectiverepeatARQ

systemARQincomparisonwithFECAdvantagesLessparitysymbols,highercoderateThecalculationcomplexityoferrordetectionislow.ItcanadaptthedifferentcharacteristicsofthechannelsDisadvantagesItrequiresduplexchannels

cannotbeusedintheunidirectioncommunicationsystemsorbroadcastingsystems.Thetransmissionefficiencyisdecreasedduetoretransmission.Whenthechannelinterferenceisserious,communicationisvirtuallyinterrupted.

SelectiverepeatARQsystem9ReceiveddataBlockinerrorBlockinerror21436575981011131412Transmittingdata995852143671011131412RetransmittedblockRetransmittedblockNAK9ACK1NAK5ACK5ACK9710.2BasicPrinciplesofErrorControlCodingBlockcode–asanexampleAssume:thereisacodecomposedof3binarysymbols,sothereare23=8differentpossiblecodewords:

000–fine 001–cloud 010–overcast011–rain 100–snow101–frost 110–fog 111–hail

Now,iftheerrorsymbolsoccur,thenerrorinformationwillbereceived.Ifonly4codewordsamongthese8codewordsareallowedtobeusedfortransmissionoftheweather,e.g.,let

000–fine011–cloud101–overcast110–rain

arepermissioncodewords,

other4kindsareforbiddencodewords.

Then,thereceivercandetectoneerrorsymbolinacodeword.Thiscodecanonlydetecttheerrorsymbols,andcannotcorrecttheerrorsymbols.

8Ifonlytwopermissioncodewordsaredefined:

forexample

000–fine111–rain

thenthecodecandetectatmosttwoerrorsymbols,orcorrectoneerrorsymbol.

9ConceptofblockcodeBlockcodeword=informationbits+checkbitsExpressionofblockcode:(n,k) where

n-totallengthofcodeword

k-numberofinformationbits

r=n–k

-numberofofcheckbits

Thecodewordinthetableisa(3,2)code.InformationbitsCheckbitsFine000Cloud011Overcast101Rain11010Structureofblockcode:Parametersofblockcode:Codeweight:numberof1sinthecodewordCodedistance:thenumberofbitswhichhavedifferentvaluesinthecorrespondinglocationsoftwocodewords,andalsocalledHammingdistanceMinimumcodedistance

(d0):minimumdiatanceamongthecodewordskinformationbitsrcheckbitsan-1an-2...arar-1an-2...a0tCodelengthn=k+r11Geometicmeaningofcodedistance:byusingacodewithn=3

asexampleGeneralspeaking,codedistanceistheHammingdistancebetweenthevertexesofaunitregularpolyhedroninanndimensionalspace.(0,0,0)(0,0,1)(1,0,1)(1,0,0)(1,1,0)(0,1,0)(0,1,1)(1,1,1)a2a0a112Errorcorrectionanddetectionabilitiesofacodearedecidedbytheminimumcodedistance

d0

.Fordetectinge

errorsymbols,requireForcorrecting

terrorsymbols,

requireed00123BAHammingdistanceTwocodewordswithcodedistance3tAtd0B301245Twocodewordswithcodedistance5Hammingdistance13Forcorrectingt

errorsymbols,anddetectinge

errorsymbolsatthesametime,require

Errorcorrectionanddetectioncombinationmode:Whenthenumberoferrorsymbolsissmall,thesystemoperatesaccordingtotheFECmodesoastosaveretransmissiontimeandimprovetransmissionefficiency.

Whenthenumberoftheerrorsymbolsislarge,thesystemoperatesaccordingto

errordetectionwithretransmissionmodesoastoreducethetotalbiterrorprobability.

HammingdistanceABe1tt(c)Twocodewordswithcodedistance(e+t+1)1410.3PerformanceofErrorCorrectionSystem10.3.1Relationshipbetweenerrorsymbolprobabilityand bandwidth

Adoptingerror-correctioncodingfordecreaseoferrorsymbolprobability,thepricepaidisincreaseofbandwidth.10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)1510.3.2Relationshipbetweenpowerandbandwidth Iftheerrorsymbolprobabilityiskeptunchanged,whenthereiscodingforsavingpower,thenthepriceisstillthebandwidthincreased.

10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)16

10.3.3Relationshipbetweentransmissionrateandbandwidth

Foragiventransmissionsystem,therelationshipbetweenitstransmissionrateandEb/n0:

whereRB

-symbolrate.

Iftheerrorcorrectioncodingisusedtoincreasethetransmissionrateandkeeptheerrorsymbolprobabilityunchanged,thenthepricepaidisstilltheincreaseofthebandwidth.10-610-510-410-310-210-1PeCDE2PSKAftercodedABEb/n0(dB)1710.3.4Codinggain

Definition:Undertheconditionofconstanterrorsymbolprobability,thesignaltonoiseratioEb/n0savedbyusingerrorcorrectioncodingiscalledcodinggain

where(Eb/n0)u

-signaltonoiseratiobeforecoding(dB);

(Eb/n0)c

-necessarysignaltonoiseratioaftercoding

(dB)1810.4Parity-CheckCodes

10.4.1Onedimensionalparity-checkcodeOddparitycode-classifiedintooddparitycodeandeven paritycode.Intheparity-checkcode,thereisonlyonecheckbit,sothecoderateequalsk/(k+1).Intheevencheckcode,thecheckbitissodesignedthatthesummationofallthebitsinthecodewordyieldsanevenresult: wherea0

isthecheckbit,otherbitsareinformationbits.Thecheckbitinoddcheckcodesmakesthenumberof1sinthecodewordbeodd:19Errordetectionability-candetectodderrorsymbols.

Assume:

thelengthofthecodewordisn,andtheoccurrencesoferrorsymbolsinthecodewordareindependentandhaveequalprobability,thentheprobabilityofjerrorsymbolsthatoccurinacodewordis

where

—thenumberofcombinationsofjerrorsymbolsoccurredinn

codewords.Parity-checkcodescan’tdetectevenerrorsymbolsinacodeword,hencetheprobabilitythattheerrorsymbolsinacodewordcan’tbedetectedequals:

-when

niseven -when

n

isodd

20[Example]Thecodein thetableisaneven

paritycode.Assumethe

errorsymbolprobability ofthechannelis10-4,and

theoccurrencesoferror areindependent.

Calculate theundetectablesymbolerrorprobability.

Substitutingthegivenconditionintothecalculationresultis

Ascanbeseenfromtheresult,thiscodecanreducetheerrorsymbolprobabilityfromtheorderofmagnitude10-4to10-8.InformationbitCheckbitFine000Cloud011Overcast101Rain1102110.4.2Twodimensionalparity-checkcodeCoderateequalsCandetectevenerrorsymbols.SuitablefordetectingbursterrorsymbolsCancorrectapartoferrorsymbols………………………2210.5LinearBlockCodesBasicconceptAlgebraiccode-utilizationofalgebraicequationstogeneratetheparity-checkbits.Linearblockcode-therelationshipbetweentheparity-checkbitsandtheinformationbitsisdeterminedbylinearalgebraicequations.Hammingcode-akindoflinearblockcodes,whichcancorrectoneerrorsymbol.

syndrome:S

Ineverparitycheckcode,calculate

i.e.,practicallycalculate

andchecktheSisequalto0

ornot.

Siscalledsyndrome.Parity-checkrelationship:23BasicprinciplesoferrorcorrectionIn,Shasonlytwovalues,henceitcanonlyexpresserrorornoerror,butcan’tdeterminethelocationoftheerror.

Ifthelengthofthecodewordincreasesonebit,thus,twosyndromescanbeobtained.Thepossiblevaluesoftwosyndromeshave4combinations,i.e.,00,01,10,and11;hencetheycanexpress4differentkindsofinformation.Ifoneofthecombinationsisusedtoexpressnoerrorsymbol,thentheother3combinationscanbeusedtoindicate3differentlocationsofanerrorsymbol.Therefore,itmayhavetheabilityoferrorcorrection.24Generallyspeaking,iftherearerparity-checkrelationships,thenrsyndromescanindicate(2r–1)differentlocationsofanerrorsymbol.

Onlyifthenumberoferrorsymbollocationswhichcanbeindicatedbythesyndromesisequalto,orlargerthan,thelengthnofthecodeword,theerrorsymbolinanylocationofthecodewordcanbecorrected;i.e.,require25HammingcodeExample:Assumeitisrequiredtodesignablockcode(n,k)whichcancorrect1errorsymbol,andthereare4informationbitsinagivencodeword,i.e.,k=4.

From

Nowitisrequiredthatthenumberofparity-checkbitsr

3。Iflet

r=3,then

n=k+r=7.Here,

a6

a5

a4

a3

a2

a1

a0

areusedtoexpressthese

7symbols,andS1S2

S3

areusedtoexpresssyndromes,thenthe

3

syndromescanjustindicate23–1=7locationsoferrorsymbols.26IftherelationshipbetweenthesyndromesandthelocationsoftheerrorsymbolscanbedefinedbythefollowingTable,thenonlywhenthereiserrorsymbolinthelocationsa6

a5

a4

a2,thevalueofthesyndromeS1equals1;otherwise,thevalueofS1equalszero.Itmeansthatthe4symbolsa6

a5

a4anda2formevenparity-checkrelationship:Similarly,wehaveS1S2S3错码位置S1S2S3错码位置001a0101a4010a1110a5100a2111a6011a3000无错码27Duringcoding,thevaluesofinformationbitsa6

a5

a4

a3aredecidedbytheincomingsignal,whicharerandom.Theparity-checkbitsa2

a1

a0aredeterminedbytheparity-checkrelationship,andtheyshouldensurethatthesyndromesintheabove3equationsequalzero,i.e.,Iftheinformationbitshavebeengiven,thenforcalculationofparity-checkbitstheaboveequationcanbewrittenasTheresultofcalculationaccordingtotheaboveequationis:Informationbita6a5a4a3Checkbita2a1a0Informationbita6a5a4a3Checkbita2a1a0000000010001110001011100110000101011010010001111010110010100110110000101011011101010011001111101000111000111111128Duringdecodinginthereceiver,syndromesS1,S2,andS3arecalculatedaccordingto thenaccordingtothefollowingtabletodecidethelocationoftheerrorsymbol:

Example:Ifthereceivedcodewordis0000011,thenaccordingtotheabove3equationstheresultofcalculationis:

S1=0,S2=1,S3=1。Thus,accordingtothetable,thelocationoftheerrorsymbolisa3.S1S2S3LocationoferrorsymbolS1S2S3Locationoferrorsymbol001a0101a4010a1110a5100a2111a6011a3000无错码29Intheaboveexample,theHammingcodeisa(7,4)

code,itsminimumcodedistance

d0=3.Fromtheequation weknowthatthiscodecandetect2errorsymbols,orcorrect1errorsymbol.CoderateofHammingcode:

Whenr(orn)isverylarge,theaboveequationapproaches1.Therefore,Hammingcodesarehighefficientcodes.30GeneralprinciplesoflinearblockcodesTherelationshipbetweentheparity-checkbitsandtheinformationbitsoflinearblockcodes

canberewrittenas

intheaboveequation,

hasbeenwrittenas+forshort.

31Parity-checkmatrix:Theaboveequation

canberewrittenasthefollowingmatrixequation

(mod2)

Theaboveequationcanbesimplifiedas

HAT=0Tor

AHT=032

HAT=0T

where

-calledparity-checkmatrixPropertiesofparity-checkmatrixH

H

decidestherelationshipbetweeninformationbitsandparity-checkbitsinthecodeword.ThenumberofrowsofH

isthenumberofparity-checkequations,i.e.,thenumberofparity-checkbitsr.Thelocationsof1sineachrowofHindicatethatthecorrespondingsymbolsareinvolvedintheparity-checkequations.

A=[a6

a5

a4

a3

a2

a1

a0]

0=[000]33Hcanbedividedintotwoparts,e.g., -typicalparity-checkmatrixwherePisamatrixwiththeorderofr

k,andIr

isaunitsquarematrixwiththeorderofr

r.TherowsinanHmatrixshouldbelinearlyunrelated;otherwise,rlinearlyunrelatedparity-checkequationscannotbeobtainedIfamatrixcanbewrittenastypicalmatrix[PIr],thenitsrowsarecertainlylinearlyunrelated.34GeneratormatrixExample:

canbewrittenas

Aftertransposingthetwosidesoftheaboveequationseparately,itbecomeswhereQ

isamatrixwiththeorderofk

r,

itisthetranspositionofP

,i.e.,

Q=PT

35

Aunitsquarematrixwiththeorderofkisaddedtotheleft-handsideofQtoformthefollowingmatrix:

-calledgeneratormatrix

Giscalledgeneratormatrix,becauseitmaybeusedtogeneratethewholeofcodewords

A,i.e.,36PropertiesofgeneratormatrixGeneratormatrixwiththeformof[IkQ]iscalledtypicalgeneratormatrix.

InthecodewordAgivenbythetypicalgeneratormatrix,iftheparity-checkbitsareinsertedaftertheinformationbits,thenthecodeiscalledsystematiccode.

TherowsofmatrixGmustalsobelinearlyunrelated.

Iftherearealreadyklinearlyunrelatedcodewords,thentheycanbeusedasgeneratormatrixG,andothercodewordscanbegeneratedfromit.37Errorpattern

Assume:

thetransmittingcodeword

A

isarowmatrixwith

n

columns:

ThereceivedcodewordisarowmatrixBwithncolumns:

Letthedifferencebetweenthereceivedcodewordandthetransmittingcodewordbe

whereE

istherowmatrixoftheerrorsymbols.

-calledtheerrorpattern

where

(i=0,1,…,n-1) If

ei

=0,thenitexpressnoerror;ifei=1,thenitexpressthatthereisanerror.

B–A=E(mod2)38Syndromematrix

B–A=EcanberewrittenasB=A+E TheaboveequationshowsthatthesumofthetransmittingcodewordAandtheerrorsymbolmatrixEequalsthereceivedcodewordB.

Example:Ifthetransmittingcodeword

A=[1000111],theerrorsymbolmatrixE=[0000100],then

thereceivedcodewordB=[1000011].

39Duringdecodinginthereceiver,

substitutethereceivedcodeword

B

forthelocationofAinequation

AHT=0. Ifthereisnoerrorinthereceivedcodeword,thenE=0,B=A.Afterthesubstitution,theequationstillholds,i.e.:

BHT=0 Assumetheleft-handsideoftheequationequalsS,i.e.,

BHT=S Substituting

B=A+Eintotheaboveequation,obtain S=(A+E)HT=AHT+EHT40

S=(A+E)HT=AHT+EHTthefirsttermintheright-handsideoftheaboveequationequals0,therefore

S=EHT

-syndromematrix

WhenHhasbeendetermined,SintheaboveequationisonlyrelatedtoE,andisunrelatedtoA.

ThismeansthatthereisadefinitelineartransformrelationshipbetweenSanderrorsymbolsE.

IfSandEhaveaone-to-onecorrespondingrelationship,thenScanrepresentthelocationsoferrorsymbols.41Closenessoflinearcode:

IfA1andA2aretwocodewordsofalinearcode,then(A1+A2)isstillacodewordinthatlinearcode.『Proof』If

A1andA2aretwocodewords,thenwehave: A1HT=0,A2HT=0 Addingtheabovetwoequations,weobtain

A1HT+A2HT=(A1+A2)HT=0

Therefore(A1+A2)isalsoacodeword.

Sincethelinearcodehascloseness,thedistancebetweentwocodewords(A1andA2)mustbetheweight(i.e.,thenumberof“1”s)ofanothercodeword(A1+A2).Hence,theminimumdistanceofthecodeisjusttheminimumweightofthecode.4210.6Cycliccodes

10.6.1Conceptofcycliccodes

Cyclicityisdesignatedinawaythat

anycodewordobtainedbyanend-aroundshiftofacodewordinacodeisalsoacodewordinthiscode.

Example:

Allcodewordsofa

(7,3)cycliccodeareasfollows:

Ifthesecondcodewordinthistableshiftedonebittotheright,thenitwillbecomethefifthcodeword;ifthefifthcodewordcyclicshiftsonebittotheright,thenitwillbecometheseventhcodeword.No.ofcodewordInformationbitParity-checkbitNo.ofcodewordInformationbitParity-checkbita6a5a4a3a2a1a0a6a5a4a3a2a1a0100000005100101120010111610111003010111071100101401110018111001043Generalcondition

If(an-1

an-2…a0)isacodewordofacycliccode,thenthecodewordsaftercyclicshift

(an-2

an-3…a0

an-1) (an-3

an-4…an-1

an-2) …… (a0

an-1…a2

a1)arestillthecodewordsofthiscode.Polynomialexpression

Acodeword

(an-1

an-2…a0)withlengthncanbeexpressedas

xintheaboveequationhasnotanymeaning,andonlyitspowerisusedtorepresentthelocationofthesymbol.Forexample:thecodeword1100101

canbeexpressedas4410.6.2OperationofcycliccodesModulo-noperationofintegers

Thereismodulo-noperationintheintegeroperation.Forexample,inmodulo-2operation,thereare

1+1=20(mod2),1+2=31(mod2),23=60(mod2)

Generallyspeaking,ifanintegermcanbeexpressas

whereQisaninteger,theninmodulo-n

operation,

wehave

m

p(modn) Therefore,inmodulo-noperation,anintegermequalstheremainderresultingfromdividingitbyn.45Modulooperationofcodepolynomial

IfanarbitrarypolynomialF(x)isdividedbyapolynomialN(x)ofdegreen,theresultobtainedisaquotientQ(x)andaremainderR(x)ofdegreelessthann,i.e.,

TheninthearithmeticofmoduloN(x),wehave

Nowtheoperationofcoefficientsofcodepolynomialisstilldoneaccordingtomodulo-2.Forexample,x3isdividedby(x3+1),andtheremainderis1:

Example:

Since

x

x3+1x4+x2+1

x4+x

x2+x+1

Additionandsubtractionarethesameinmodulo-2operation.46Mathematicalexpressionofcycliccodes

Incycliccodes,letT(x)beacodewordwithlengthn,

if

thenT(x)isalsoacodewordofthatcode.

[Proof]Assumeacycliccodeisthenwehave

T(x)intheaboveequationistheresultofleft-handcyclicshiftitimesofthecodewordT(x).

Example:acycliccodewordis1100101,i.e.,

Iflet

i=3,thenwehave

Thecodewordcorrespondingtotheaboveequationis0101110.Itistheresultofleft-handshift3timesofT(x).Conclusion:

Acycliccodewordwithlengthnmustbearemainderofoperationmodulo-(xn+1).47GenerationofcycliccodesThewholecodewordcanbegeneratedfromthekinformationbits,ifwehavethegeneratormatrix

G.

Example:

where

EachrowofthegeneratorG

isacodeword.Hence,ifk

codewordshasbeenfound,thenwecanconstructG.Asmentionedabove,thekknowncodewordsmustbelinearlyunrelated.Incycliccodes,a(n,k)codehas2kdifferentcodewords.Ifg(x)expressesthecodeword,andtheforegoing(k-1)bitsofitareall0s,theng(x),xg(x),x2

g(x),,xk-1

g(x)areallcodewords,andthisk

codewordsarelinearunrelated.

Hence,theycanbeusedtoconstructG.48Inadditiontothecodewordofall0s,thereisnotanycodewordwhichhascontinuousk0sincycliccodes.Otherwise,afterseveralcyclicshifts,acodewordwherekinformationbitsareall0s,buttheparity-checkbitsarenotall0s,willbeobtained.Obviously,thisisimpossibleinlinearcodes.Hence,g(x)mustbea(n–k)degreepolynomial,theconstanttermofwhichisnotzero.Andthisg(x)istheonlypolynomialofdegree(n–k)inthis(n,k)code.Sinceifthereweretwo,thentheadditionofthesetwoshouldbealsoacodewordduetotheclosenessofthecode,andthedegreeofthepolynomialofthiscodewillbesmallerthan(n–k),i.e.,thenumberofcontinuous0sislargerthan(k–1).Obviously,thisiscontradictorytotheaboveconclusion.Thisexclusive(n–k)degreepolynomialg(x)iscalledgeneratorpolynomialofthecode.Onceg(x)isdetermined,thenthewhole(n,k)cycliccodeisdetermined.49Therefore,generatormatrixGof cycliccodescanbewrittenasExample:ThecodeintheaboveTableisa(7,3)cycliccode,whosen=7,k=3,andn–k=4.Theexclusive(n–k)=4degreecodepolynomialrepresentsthesecondcodeword,0010111;thecorrespondingcodepolynomial,i.e.thegeneratorpolynomial,isg(x)=x4+x2+x+1.No.ofcodewordInformationbitParity-checkbitNo.ofcodewordInformationbitParity-checkbita6a5a4a3a2a1a0a6a5a4a3a2a1a0100000005100101120010111610111003010111071100101401110018111001050

g(x)=x4+x2+x+1is“10111” Substitutingg(x)intotheabovematrix,obtain

or SincetheaboveequationdoesnotaccordwiththeformG=[IkQ],itisnotatypicalgeneratormatrix.However,afterlineartransformation,itisnotdifficulttobeconvertedtoatypicalgeneratormatrix.

51ThepolynomialexpressionT(x)ofthecycliccodewordis TheaboveequationilluminatesthatallcodepolynomialsT(x)canbedividedexactlybyg(x),andanarbitrarypolynomialofthedegreenotlargerthan(k–1)multipliesg(x)resultingacodepolynomial.52Findcodegeneratorpolynomial

SinceanarbitrarypolynomialT(x)ofacycliccodeisthemultipleofg(x),itcanbewrittenas

T(x)=h(x)g(x) andgeneratorpolynomialg(x)itselfisalsoacodeword,i.e.,

T

(x)=g(x) SincecodewordT

(x)isapolynomialofdegree(n–k),xkT

(x)isapolynomialofdegreen.Itisknownfrom

xk

T

(x)isalsoacodewordintheoperationof

modulo-(xn+1),sowehave

Thenumeratoranddenominatorintheleft-handsideoftheaboveequationarepolynomialsofdegreen,sothequotientofdivisionQ(x)=1.Hence,theaboveequationcanbewrittenas

53Substituting

T(x)=h(x)g(x)andT

(x)=g(x)into

Aftersimplifiedweobtain Theaboveequationilluminatesthatthegeneratorpolynomialg(x)shouldbeafactorof(xn+1).Forexample,(x7+1)canbedecomposedas

Tofindthegeneratorpolynomialg(x)of(7,3)cycliccode,itisnecessarytofindafactorofdegree(n–k)=4.Itisnotdifficulttoseethattherearetwosuchfactors,i.e.,

Theabovetwoequationsmaybethegeneratorpolynomial.

However,differentgeneratorpolynomialgeneratesdifferentcycliccodes.5410.6.3CodingofcycliccodesTomultiplym(x)byxn-k.Thisoperation,infact,istoattach(n–k)0stotheendoftheinformationbits.Forexample,iftheinformationbitsare110,thenitspolynomialism(x)=x2+x.Whenn–k=7–3=4,xn-km(x)=x4(x2+x)=x6+x5,anditexpressescodeword1100000.Todividexn-km(x)byg(x),theresultsarethequotientQ(x)andtheremainderr(x),i.e.,wehaveForexample,ifg(x)=x4+x2+x+1isgiven,thenwehave

Theaboveequationistheoperationexpressedbycodepolynomial.Itisequivalenttothefollowingequation:CodewordT(x)obtainedis:T(x)=xn-k

m(x)+r(x)

IntheaboveexampleT(x)=1100000+101=1100101 55

10.6.4DecodingofcycliccodesForerrordetection:Whenthereisnoerrorinthereceivedcodeword,thereceivedcodeword

R(x)canbeexactlydividedbyg(x);

i.e.,inth

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论