2023届重庆市聚奎中学高三数学第一学期期末学业质量监测模拟试题含解析_第1页
2023届重庆市聚奎中学高三数学第一学期期末学业质量监测模拟试题含解析_第2页
2023届重庆市聚奎中学高三数学第一学期期末学业质量监测模拟试题含解析_第3页
2023届重庆市聚奎中学高三数学第一学期期末学业质量监测模拟试题含解析_第4页
2023届重庆市聚奎中学高三数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高三上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆的焦点为,点在椭圆上,若,则的大小为()A. B. C. D.2.在中,角所对的边分别为,已知,.当变化时,若存在最大值,则正数的取值范围为A. B. C. D.3.已知点是双曲线上一点,若点到双曲线的两条渐近线的距离之积为,则双曲线的离心率为()A. B. C. D.24.已知函数,,,,则,,的大小关系为()A. B. C. D.5.函数的图象大致为A. B. C. D.6.设一个正三棱柱,每条棱长都相等,一只蚂蚁从上底面的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为,则为()A. B.C. D.7.下列函数中,既是偶函数又在区间上单调递增的是()A. B. C. D.8.集合,,则()A. B. C. D.9.在各项均为正数的等比数列中,若,则()A. B.6 C.4 D.510.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.11.设复数满足(为虚数单位),则复数的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知三棱锥中,是等边三角形,,则三棱锥的外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.将底面直径为4,高为的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为__________.14.根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过“勾3股4弦5”的问题.现有满足“勾3股4弦5”,其中“股”,为“弦”上一点(不含端点),且满足勾股定理,则______.15.在的展开式中,的系数等于__.16.已知向量满足,,则______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,函数,其中,是的一个极值点,且.(1)讨论的单调性(2)求实数和a的值(3)证明18.(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立.19.(12分)健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:现随机抽取了100为会员统计它们的消费次数,得到数据如下:假设该项目的成本为每次30元,根据给出的数据回答下列问题:(1)估计1位会员至少消费两次的概率(2)某会员消费4次,求这4次消费获得的平均利润;(3)假设每个会员每星期最多消费4次,以事件发生的频率作为相应事件的概率,从会员中随机抽取两位,记从这两位会员的消费获得的平均利润之差的绝对值为,求的分布列及数学期望20.(12分)已知是递增的等比数列,,且、、成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)设,,求数列的前项和.21.(12分)已知圆,定点,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.22.(10分)如图,在四棱锥中,底面是矩形,是的中点,平面,且,.()求与平面所成角的正弦.()求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据椭圆的定义可得,,再利用余弦定理即可得到结论.【详解】由题意,,,又,则,由余弦定理可得.故.故选:C.【点睛】本题考查椭圆的定义,考查余弦定理,考查运算能力,属于基础题.2、C【解析】

因为,,所以根据正弦定理可得,所以,,所以,其中,,因为存在最大值,所以由,可得,所以,所以,解得,所以正数的取值范围为,故选C.3、A【解析】

设点的坐标为,代入椭圆方程可得,然后分别求出点到两条渐近线的距离,由距离之积为,并结合,可得到的齐次方程,进而可求出离心率的值.【详解】设点的坐标为,有,得.双曲线的两条渐近线方程为和,则点到双曲线的两条渐近线的距离之积为,所以,则,即,故,即,所以.故选:A.【点睛】本题考查双曲线的离心率,构造的齐次方程是解决本题的关键,属于中档题.4、B【解析】

可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.5、D【解析】

由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.6、D【解析】

由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,可得,根据求数列的通项知识可得选项.【详解】由题意,设第次爬行后仍然在上底面的概率为.①若上一步在上面,再走一步要想不掉下去,只有两条路,其概率为;②若上一步在下面,则第步不在上面的概率是.如果爬上来,其概率是,两种事件又是互斥的,∴,即,∴,∴数列是以为公比的等比数列,而,所以,∴当时,,故选:D.【点睛】本题考查几何体中的概率问题,关键在于运用递推的知识,得出相邻的项的关系,这是常用的方法,属于难度题.7、C【解析】

结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.8、A【解析】

解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A.【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.9、D【解析】

由对数运算法则和等比数列的性质计算.【详解】由题意.故选:D.【点睛】本题考查等比数列的性质,考查对数的运算法则.掌握等比数列的性质是解题关键.10、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.11、D【解析】

先把变形为,然后利用复数代数形式的乘除运算化简,求出,得到其坐标可得答案.【详解】解:由,得,所以,其在复平面内对应的点为,在第四象限故选:D【点睛】此题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.12、D【解析】

根据底面为等边三角形,取中点,可证明平面,从而,即可证明三棱锥为正三棱锥.取底面等边的重心为,可求得到平面的距离,画出几何关系,设球心为,即可由球的性质和勾股定理求得球的半径,进而得球的表面积.【详解】设为中点,是等边三角形,所以,又因为,且,所以平面,则,由三线合一性质可知所以三棱锥为正三棱锥,设底面等边的重心为,可得,,所以三棱锥的外接球球心在面下方,设为,如下图所示:由球的性质可知,平面,且在同一直线上,设球的半径为,在中,,即,解得,所以三棱锥的外接球表面积为,故选:D.【点睛】本题考查了三棱锥的结构特征和相关计算,正三棱锥的外接球半径求法,球的表面积求法,对空间想象能力要求较高,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,将侧面积表示成关于的函数,再利用一元二次函数的性质求最值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥.设圆柱的高为h,底面半径为r,则,所以.∴,当时,的最大值为.故答案为:.【点睛】本题考查圆柱的侧面积的最值,考查函数与方程思想、转化与化归思想、,考查空间想象能力和运算求解能力,求解时注意将问题转化为函数的最值问题.14、【解析】

先由等面积法求得,利用向量几何意义求解即可.【详解】由等面积法可得,依题意可得,,所以.故答案为:【点睛】本题考查向量的数量积,重点考查向量数量积的几何意义,属于基础题.15、7【解析】

由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.16、1【解析】

首先根据向量的数量积的运算律求出,再根据计算可得;【详解】解:因为,所以又所以所以故答案为:【点睛】本题考查平面向量的数量积的运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在区间单调递增;(2);(3)证明见解析.【解析】

(1)求出,在定义域内,再次求导,可得在区间上恒成立,从而可得结论;(2)由,可得,由可得,联立解方程组可得结果;(3)由(1)知在区间单调递增,可证明,取,可得,而,利用裂项相消法,结合放缩法可得结果.【详解】(1)由已知可得函数的定义域为,且,令,则有,由,可得,可知当x变化时,的变化情况如下表:1-0+极小值,即,可得在区间单调递增;(2)由已知可得函数的定义域为,且,由已知得,即,①由可得,,②联立①②,消去a,可得,③令,则,由(1)知,,故,在区间单调递增,注意到,所以方程③有唯一解,代入①,可得,;(3)证明:由(1)知在区间单调递增,故当时,,,可得在区间单调递增,因此,当时,,即,亦即,这时,故可得,取,可得,而,故.【点睛】本题主要考查利用导数研究函数的单调性以及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,利用导数证明不等主要方法有两个,一是比较简单的不等式证明,不等式两边作差构造函数,利用导数研究函数的单调性,求出函数的最值即可;二是较为综合的不等式证明,要观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.18、(1)(2)((3)见证明【解析】

(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以{,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.19、(1)(2)22.5(3)见解析,【解析】

(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望.【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为:0期望为:【点睛】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题.20、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;(Ⅱ)求得,然后利用裂项相消法可求得.【详解】(Ⅰ)设数列的公比为,由题意及,知.、、成等差数列成等差数列,,,即,解得或(舍去),.数列的通项公式为;(Ⅱ),.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.21、(1);(2)存在,.【解析】

(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论