人教版八年级数学上册 第27章 相似 专题培优训练【含答案】_第1页
人教版八年级数学上册 第27章 相似 专题培优训练【含答案】_第2页
人教版八年级数学上册 第27章 相似 专题培优训练【含答案】_第3页
人教版八年级数学上册 第27章 相似 专题培优训练【含答案】_第4页
人教版八年级数学上册 第27章 相似 专题培优训练【含答案】_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版八年级数学上册第27章相似专题培优训练一、选择题(每小题3分,共30分)1.下列四条线段为成比例线段的是()A.a=10,b=5,c=4,d=7B.a=1,b=eq\r(3),c=eq\r(6),d=eq\r(2)C.a=8,b=5,c=4,d=3D.a=9,b=eq\r(3),c=3,d=eq\r(6)2.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36cm,则较大多边形的周长为()A.48cmB.54cmC.56cmD.64cm3.(河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()4.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m第4题图第5题图第6题图5.如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2把△EFO缩小,则点E的对应点E′的坐标为()A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)6.如图,若∠1=∠2=∠3,则图中的相似三角形有()A.1对B.2对C.3对D.4对7.如图,在平行四边形ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3∶4B.9∶16C.9∶1D.3∶1第7题图,第8题图,第9题图,第10题图8.如图,在平面直角坐标系的4×4的正方形方格中,△ABC是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是()A.(1,4)B.(3,4)C.(3,1)D.(1,4)或(3,4)9.(金华)如图,在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为()10.(包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是()A.CE=eq\r(3)DEB.CE=eq\r(2)DEC.CE=3DED.CE=2DE二、填空题(每小题3分,共24分)11.如果在比例1∶的地图上,A,B两地的图上距离为3.6厘米,那么A,B两地的实际距离为____千米.12.(娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是___________(答案不唯一)__.(只需写一个条件,不添加辅助线和字母)第12题图第13题图第14题图第15题图13.(临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为____.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为____.15.(安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=eq\f(2,3)EH,那么EH的长为___.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=____________里.第16题图第17题图第18题图17.如图,点M是Rt△ABC的斜边BC上异于B,C的一点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有____条.18.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=eq\f(5,2)S△ABF.其中正确的结论有_________________.(填序号)三、解答题(共66分)19.(8分)(眉山)如图,△ABC三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的相似比为2∶1,并直接写出点A2的坐标.20.(8分)如图,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.21.(9分)如图,已知B,C,E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F.求证:(1)△ACE≌△BCD;(2)eq\f(AG,GC)=eq\f(AF,FE).22.(9分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)23.(10分)如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.24.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:∠DAF=∠CDE;(2)△ADF与△DEC相似吗?为什么?(3)若AB=4,AD=3eq\r(3),AE=3,求AF的长.25.(12分)如图①,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于点F,OE⊥OB交BC边于点E.(1)求证:△ABF∽△COE;(2)当O为AC的中点,eq\f(AC,AB)=2时,如图②,求eq\f(OF,OE)的值;(3)当O为AC边中点,eq\f(AC,AB)=n时,请直接写出eq\f(OF,OE)的值.

答案一、选择题(每小题3分,共30分)1.下列四条线段为成比例线段的是(B)A.a=10,b=5,c=4,d=7B.a=1,b=eq\r(3),c=eq\r(6),d=eq\r(2)C.a=8,b=5,c=4,d=3D.a=9,b=eq\r(3),c=3,d=eq\r(6)2.两个相似多边形的面积比是9∶16,其中较小多边形的周长为36cm,则较大多边形的周长为(A)A.48cmB.54cmC.56cmD.64cm3.(河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是(C)4.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于(B)A.60mB.40mC.30mD.20m第4题图第5题图第6题图5.如图,E(-4,2),F(-1,-1),以O为位似中心,按比例尺1∶2把△EFO缩小,则点E的对应点E′的坐标为(A)A.(2,-1)或(-2,1)B.(8,-4)或(-8,4)C.(2,-1)D.(8,-4)6.如图,若∠1=∠2=∠3,则图中的相似三角形有(D)A.1对B.2对C.3对D.4对7.如图,在平行四边形ABCD中,点E在边DC上,DE∶EC=3∶1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为(B)A.3∶4B.9∶16C.9∶1D.3∶1第7题图,第8题图,第9题图,第10题图8.如图,在平面直角坐标系的4×4的正方形方格中,△ABC是格点三角形(三角形的三个顶点是小正方形的顶点),若以格点P,A,B为顶点的三角形与△ABC相似(全等除外),则格点P的坐标是(D)A.(1,4)B.(3,4)C.(3,1)D.(1,4)或(3,4)9.(金华)如图,在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为(D)10.(包头)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,且DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是(B)A.CE=eq\r(3)DEB.CE=eq\r(2)DEC.CE=3DED.CE=2DE二、填空题(每小题3分,共24分)11.如果在比例1∶的地图上,A,B两地的图上距离为3.6厘米,那么A,B两地的实际距离为__72__千米.12.(娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是__AB∥DE(答案不唯一)__.(只需写一个条件,不添加辅助线和字母)第12题图第13题图第14题图第15题图13.(临沂)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为__eq\f(12,5)__.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB,CA′相交于点D,则线段BD的长为__6__.15.(安顺)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=eq\f(2,3)EH,那么EH的长为__eq\f(3,2)__.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH=__1.05__里.第16题图第17题图第18题图17.如图,点M是Rt△ABC的斜边BC上异于B,C的一点,过M点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有__3__条.18.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF=eq\f(5,2)S△ABF.其中正确的结论有__①②③④__.(填序号)三、解答题(共66分)19.(8分)(眉山)如图,△ABC三个顶点的坐标分别为A(0,-3),B(3,-2),C(2,-4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的相似比为2∶1,并直接写出点A2的坐标.解:(1)图略(2)图略,A2(-2,-2)20.(8分)如图,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.解:(1)∵AB∥CD,∴∠B=∠C,又∠C=∠EAF,∴∠EAF=∠B(2)∵∠EAF=∠B,∠AFE=∠BFA,∴△AFE∽△BFA,则eq\f(AF,BF)=eq\f(FE,FA),∴AF2=FE·FB21.(9分)如图,已知B,C,E三点在同一条直线上,△ABC与△DCE都是等边三角形,其中线段BD交AC于点G,线段AE交CD于点F.求证:(1)△ACE≌△BCD;(2)eq\f(AG,GC)=eq\f(AF,FE).解:(1)∵△ABC与△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,可证△ACE≌△BCD(SAS)(2)∵△ACE≌△BCD,∴∠AEC=∠BDC,可证△GCD≌△FCE(ASA),∴CG=CF,∴△CFG为等边三角形,∴∠CGF=∠ACB=60°,∴GF∥CE,∴eq\f(AG,GC)=eq\f(AF,FE)22.(9分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度.(王亮眼睛距地面的高度视为他的身高)解:根据题意知AB⊥BF,CD⊥BF,EF⊥BF,EF=1.6m,CD=3m,FD=2m,BD=15m,过E点作EH⊥AB,交AB于点H,交CD于点G,则EG⊥CD,EH∥FB,EF=DG=BH,EG=FD,CG=CD-EF,∴△ECG∽△EAH,∴eq\f(EG,EH)=eq\f(CG,AH),即eq\f(2,2+15)=eq\f(3-1.6,AH),∴AH=11.9m,所以AB=AH+HB=AH+EF=11.9+1.6=13.5(m),即旗杆的高度为13.5m23.(10分)如图,在△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.解:(1)∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线(2)∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴eq\f(DF,FC)=eq\f(DE,AC),∴eq\f(2,6)=eq\f(3,AC),解得AC=9,即⊙O的直径为924.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:∠DAF=∠CDE;(2)△ADF与△DEC相似吗?为什么?(3)若AB=4,AD=3eq\r(3),AE=3,求AF的长.解:(1)∵∠AFE=∠DAF+∠FDA,又∵四边形ABCD为平行四边形,∴∠B=∠ADC=∠ADF+∠CDE,又∵∠AFE=∠B,∴∠DAF=∠CDE(2)△ADF∽△DEC,理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CED,由(1)知∠DAF=∠CDE,∴△ADF∽△DEC(3)∵四边形/r/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论