2022届安徽省铜陵五中高考压轴卷数学试卷含解析_第1页
2022届安徽省铜陵五中高考压轴卷数学试卷含解析_第2页
2022届安徽省铜陵五中高考压轴卷数学试卷含解析_第3页
2022届安徽省铜陵五中高考压轴卷数学试卷含解析_第4页
2022届安徽省铜陵五中高考压轴卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.2.在中,点为中点,过点的直线与,所在直线分别交于点,,若,,则的最小值为()A. B.2 C.3 D.3.已知函数,,,,则,,的大小关系为()A. B. C. D.4.已知函数,,且,则()A.3 B.3或7 C.5 D.5或85.已知数列的前项和为,且,,则()A. B. C. D.6.已知是虚数单位,则复数()A. B. C.2 D.7.设全集,集合,.则集合等于()A. B. C. D.8.已知向量,且,则等于()A.4 B.3 C.2 D.19.命题:的否定为A. B.C. D.10.设集合,,则()A. B.C. D.11.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论中不正确的是()注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A.互联网行业从业人员中90后占一半以上B.互联网行业中从事技术岗位的人数超过总人数的C.互联网行业中从事运营岗位的人数90后比80前多D.互联网行业中从事技术岗位的人数90后比80后多12.已知,是函数图像上不同的两点,若曲线在点,处的切线重合,则实数的最小值是()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,则此四棱锥的体积为_____.14.已知平面向量、的夹角为,且,则的最大值是_____.15.如图是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,,则的面积为________.16.已知是定义在上的奇函数,当时,,则不等式的解集用区间表示为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知正方形所在平面与梯形所在平面垂直,BM∥AN,,,.(1)证明:平面;(2)求点N到平面CDM的距离.18.(12分)如图所示,三棱柱中,平面,点,分别在线段,上,且,,是线段的中点.(Ⅰ)求证:平面;(Ⅱ)若,,,求直线与平面所成角的正弦值.19.(12分)已知函数.(1)若是函数的极值点,求的单调区间;(2)当时,证明:20.(12分)已知.(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围.21.(12分)在中,角所对的边分别为,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.(1)若轴,且满足直线与圆相切,求圆的方程;(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.2.B【解析】

由,,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,,所以.因为,,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1.故选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3.B【解析】

可判断函数在上单调递增,且,所以.【详解】在上单调递增,且,所以.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.4.B【解析】

根据函数的对称轴以及函数值,可得结果.【详解】函数,若,则的图象关于对称,又,所以或,所以的值是7或3.故选:B.【点睛】本题考查的是三角函数的概念及性质和函数的对称性问题,属基础题5.C【解析】

根据已知条件判断出数列是等比数列,求得其通项公式,由此求得.【详解】由于,所以数列是等比数列,其首项为,第二项为,所以公比为.所以,所以.故选:C【点睛】本小题主要考查等比数列的证明,考查等比数列通项公式,属于基础题.6.A【解析】

根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.7.A【解析】

先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.8.D【解析】

由已知结合向量垂直的坐标表示即可求解.【详解】因为,且,,则.故选:.【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题.9.C【解析】

命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C.10.A【解析】

解出集合,利用交集的定义可求得集合.【详解】因为,又,所以.故选:A.【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解,考查计算能力,属于基础题.11.D【解析】

根据两个图形的数据进行观察比较,即可判断各选项的真假.【详解】在A中,由整个互联网行业从业者年龄分别饼状图得到互联网行业从业人员中90后占56%,所以是正确的;在B中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分布条形图得到:,互联网行业从业技术岗位的人数超过总人数的,所以是正确的;在C中,由整个互联网行业从业者年龄分别饼状图,90后从事互联网行业岗位分别条形图得到:,互联网行业从事运营岗位的人数90后比80后多,所以是正确的;在D中,互联网行业中从事技术岗位的人数90后所占比例为,所以不能判断互联网行业中从事技术岗位的人数90后比80后多.故选:D.【点睛】本题主要考查了命题的真假判定,以及统计图表中饼状图和条形图的性质等基础知识的应用,着重考查了推理与运算能力,属于基础题.12.B【解析】

先根据导数的几何意义写出在两点处的切线方程,再利用两直线斜率相等且纵截距相等,列出关系树,从而得出,令函数,结合导数求出最小值,即可选出正确答案.【详解】解:当时,,则;当时,则.设为函数图像上的两点,当或时,,不符合题意,故.则在处的切线方程为;在处的切线方程为.由两切线重合可知,整理得.不妨设则,由可得则当时,的最大值为.则在上单调递减,则.故选:B.【点睛】本题考查了导数的几何意义,考查了推理论证能力,考查了函数与方程、分类与整合、转化与化归等思想方法.本题的难点是求出和的函数关系式.本题的易错点是计算.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

画图直观图可得该几何体为棱锥,再计算高求解体积即可.【详解】解:如图,是一个四棱锥的平面展开图,其中间是边长为的正方形,上面三角形是等边三角形,左、右三角形是等腰直角三角形,此四棱锥中,是边长为的正方形,是边长为的等边三角形,故,又,故平面平面,的高是四棱锥的高,此四棱锥的体积为:.故答案为:.【点睛】本题主要考查了四棱锥中的长度计算以及垂直的判定和体积计算等,需要根据题意14.【解析】

建立平面直角坐标系,设,可得,进而可得出,,由此将转化为以为自变量的三角函数,利用三角恒等变换思想以及正弦函数的有界性可得出结果.【详解】根据题意建立平面直角坐标系如图所示,设,,以、为邻边作平行四边形,则,设,则,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,则,当时,取最大值.故答案为:.【点睛】本题考查了向量的数量积最值的计算,将问题转化为角的三角函数的最值问题是解答的关键,考查计算能力,属于难题.15.【解析】

根据个全等的三角形,得到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题.16.【解析】设,则,由题意可得故当时,由不等式,可得,或求得,或故答案为(三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析(2)【解析】

(1)因为正方形ABCD所在平面与梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因为平面ABMN,平面ABMN,所以,,因为,所以,因为,所以,所以,因为在直角梯形ABMN中,,所以,所以,所以,因为,所以平面.(2)如图,取BM的中点E,则,又BM∥AN,所以四边形ABEN是平行四边形,所以NE∥AB,又AB∥CD,所以NE∥CD,因为平面CDM,平面CDM,所以NE∥平面CDM,所以点N到平面CDM的距离与点E到平面CDM的距离相等,设点N到平面CDM的距离为h,由可得点B到平面CDM的距离为2h,由题易得平面BCM,所以,且,所以,又,所以由可得,解得,所以点N到平面CDM的距离为.18.(Ⅰ)证明见详解;(Ⅱ).【解析】

(Ⅰ)取中点为,根据几何关系,求证四边形为平行四边形,即可由线线平行推证线面平行;(Ⅱ)以为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.【详解】(Ⅰ)取的中点,连接,.如下图所示:因为,分别是线段和的中点,所以是梯形的中位线,所以.又,所以.因为,,所以四边形为平行四边形,所以.所以,.所以四边形为平行四边形,所以.又平面,平面,所以平面.(Ⅱ)因为,且平面,故可以为原点,的方向为轴正方向建立如图所示的空间直角坐标系,如下图所示:不妨设,则,所以,,,,.所以,,.设平面的法向量为,则所以可取.设直线与平面所成的角为,则.故可得直线与平面所成的角的正弦值为.【点睛】本题考查由线线平行推证线面平行,以及用向量法求解线面角,属综合中档题.19.(1)递减区间为(-1,0),递增区间为(2)见解析【解析】

(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.【详解】(1)函数可求得,则解得所以,定义域为,在单调递增,而,∴当时,,单调递减,当时,,单调递增,此时是函数的极小值点,的递减区间为,递增区间为(2)证明:当时,,因此要证当时,,只需证明,即令,则,在是单调递增,而,∴存在唯一的,使得,当,单调递减,当,单调递增,因此当时,函数取得最小值,,,故,从而,即,结论成立.【点睛】本题考查了由函数极值求参数,并根据导数判断函数的单调区间,利用导数证明不等式恒成立,构造函数法的综合应用,属于难题.20.(1);(2)【解析】分析:(1)将代入函数解析式,求得,利用零点分段将解析式化为,然后利用分段函数,分情况讨论求得不等式的解集为;(2)根据题中所给的,其中一个绝对值符号可以去掉,不等式可以化为时,分情况讨论即可求得结果.详解:(1)当时,,即故不等式的解集为.(2)当时成立等价于当时成立.若,则当时;若,的解集为,所以,故.综上,的取值范围为.点睛:该题考查的是有关绝对值不等式的解法,以及含参的绝对值的式子在某个区间上恒成立求参数的取值范围的问题,在解题的过程中,需要会用零点分段法将其化为分段函数,从而将不等式转化为多个不等式组来解决,关于第二问求参数的取值范围时,可以应用题中所给的自变量的范围,去掉一个绝对值符号,之后进行分类讨论,求得结果.21.(1);(2).【解析】

(1)由正弦定理可得,再用余弦定理即可得到角C;(2),再利用求正弦型函数值域的方法即可得到答案.【详解】(1)因为,所以.在中,由正弦定理得,所以,即.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论