版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高三上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.定义在上的偶函数,对,,且,有成立,已知,,,则,,的大小关系为()A. B. C. D.2.双曲线的渐近线方程为()A. B. C. D.3.若复数为虚数单位在复平面内所对应的点在虚轴上,则实数a为()A. B.2 C. D.4.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.6.的展开式中的系数为()A.5 B.10 C.20 D.307.已知,,分别是三个内角,,的对边,,则()A. B. C. D.8.函数的图象大致为()A. B.C. D.9.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为()A. B. C. D.11.已知集合,,则等于()A. B. C. D.12.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为__________.14.在平面直角坐标系xOy中,已知双曲线(a>0)的一条渐近线方程为,则a=_______.15.(5分)已知为实数,向量,,且,则____________.16.已知关于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集为A,且A中共含有n个整数,则当n最小时实数a的值为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.18.(12分)已知函数f(x)=x-2a-x-a(Ⅰ)若f(1)>1,求a的取值范围;(Ⅱ)若a<0,对∀x,y∈-∞,a,都有不等式f(x)≤(y+2020)+19.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数,为实数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线与曲线交于,两点,线段的中点为.(1)求线段长的最小值;(2)求点的轨迹方程.21.(12分)已知在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线与直线的直角坐标方程;(2)若曲线与直线交于两点,求的值.22.(10分)如图,在四棱锥中,平面平面,.(Ⅰ)求证:平面;(Ⅱ)若锐二面角的余弦值为,求直线与平面所成的角.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据偶函数的性质和单调性即可判断.【详解】解:对,,且,有在上递增因为定义在上的偶函数所以在上递减又因为,,所以故选:A【点睛】考查偶函数的性质以及单调性的应用,基础题.2、C【解析】
根据双曲线的标准方程,即可写出渐近线方程.【详解】双曲线,双曲线的渐近线方程为,故选:C【点睛】本题主要考查了双曲线的简单几何性质,属于容易题.3、D【解析】
利用复数代数形式的乘除运算化简,再由实部为求得值.【详解】解:在复平面内所对应的点在虚轴上,,即.故选D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.4、B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.5、D【解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.6、C【解析】
由知,展开式中项有两项,一项是中的项,另一项是与中含x的项乘积构成.【详解】由已知,,因为展开式的通项为,所以展开式中的系数为.故选:C.【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题.7、C【解析】
原式由正弦定理化简得,由于,可求的值.【详解】解:由及正弦定理得.因为,所以代入上式化简得.由于,所以.又,故.故选:C.【点睛】本题主要考查正弦定理解三角形,三角函数恒等变换等基础知识;考查运算求解能力,推理论证能力,属于中档题.8、A【解析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.9、B【解析】
根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.10、A【解析】
根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.【详解】如图所示:设内切球球心为,到平面的距离为,截面圆的半径为,因为内切球的半径等于正方体棱长的一半,所以球的半径为,又因为,所以,又因为,所以,所以,所以截面圆的半径,所以截面圆的面积为.故选:A.【点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.11、B【解析】
解不等式确定集合,然后由补集、并集定义求解.【详解】由题意或,∴,.故选:B.【点睛】本题考查集合的综合运算,以及一元二次不等式的解法,属于基础题型.12、A【解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
设,则,,由知,,,作,垂足为C,则C为的中点,在和中分别求出,进而求出的关系式,即可求出椭圆的离心率.【详解】如图,设,则,,由椭圆定义知,,因为,所以,,作,垂足为C,则C为的中点,在中,因为,所以,在中,由余弦定理可得,,即,解得,所以椭圆的离心率为.故答案为:【点睛】本题考查椭圆的离心率和直线与椭圆的位置关系;利用椭圆的定义,结合焦点三角形和余弦定理是求解本题的关键;属于中档题、常考题型.14、3【解析】
双曲线的焦点在轴上,渐近线为,结合渐近线方程为可求.【详解】因为双曲线(a>0)的渐近线为,且一条渐近线方程为,所以.故答案为:.【点睛】本题主要考查双曲线的渐近线,明确双曲线的焦点位置,写出双曲线的渐近线方程的对应形式是求解的关键,侧重考查数学运算的核心素养.15、5【解析】
由,,且,得,解得,则,则.16、-1【解析】
讨论三种情况,a<0时,根据均值不等式得到a(﹣a)≤﹣14,计算等号成立的条件得到答案.【详解】已知关于x的不等式(ax﹣a1﹣4)(x﹣4)>0,①a<0时,[x﹣(a)](x﹣4)<0,其中a0,故解集为(a,4),由于a(﹣a)≤﹣14,当且仅当﹣a,即a=﹣1时取等号,∴a的最大值为﹣4,当且仅当a4时,A中共含有最少个整数,此时实数a的值为﹣1;②a=0时,﹣4(x﹣4)>0,解集为(﹣∞,4),整数解有无穷多,故a=0不符合条件;③a>0时,[x﹣(a)](x﹣4)>0,其中a4,∴故解集为(﹣∞,4)∪(a,+∞),整数解有无穷多,故a>0不符合条件;综上所述,a=﹣1.故答案为:﹣1.【点睛】本题考查了解不等式,均值不等式,意在考查学生的计算能力和综合应用能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)【解析】
(1)根据面面垂直的性质得到平面,从而得到,利用勾股定理得到,利用线面垂直的判定定理证得平面;(2)设,利用椎体的体积公式求得,利用导数研究函数的单调性,从而求得时,四面体的体积取得最大值,之后利用空间向量求得二面角的余弦值.【详解】(1)证明:因为,平面平面,平面平面,平面,所以平面,因为平面,所以.因为,所以,所以,因为,所以平面.(2)解:设,则,四面体的体积.,当时,,单调递增;当时,,单调递减.故当时,四面体的体积取得最大值.以为坐标原点,建立空间直角坐标系,则,,,,.设平面的法向量为,则,即,令,得,同理可得平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的性质,线面垂直的判定,椎体的体积,二面角的求法,在解题的过程中,注意巧用导数求解体积的最大值.18、(Ⅰ)(-∞,-1)∪(1,+∞);(Ⅱ)-1010,0.【解析】
(Ⅰ)由题意不等式化为|1-2a|-|1-a|>1,利用分类讨论法去掉绝对值求出不等式的解集即可;(Ⅱ)由题意把问题转化为[f(x)]max≤[|y+2020|+|y-a|]min,分别求出【详解】(Ⅰ)由题意知,f(1)=|1-2a|-|1-a|>1,若a≤12,则不等式化为1-2a-1+a>1,解得若12<a<1,则不等式化为2a-1-(1-a)>1,解得若a≥1,则不等式化为2a-1+1-a>1,解得a>1,综上所述,a的取值范围是(-∞,-1)∪(1,+∞);(Ⅱ)由题意知,要使得不等式f(x)≤|(y+2020)|+|y-a|恒成立,只需[f(x)]max当x∈(-∞,a]时,|x-2a|-|x-a|≤-a,[f(x)]max因为|y+2020|+|y-a|≥|a+2020|,所以当(y+2020)(y-a)≤0时,[|y+2020|+|y-a|]min即-a≤|a+2020|,解得a≥-1010,结合a<0,所以a的取值范围是[-1010,0).【点睛】本题考查了绝对值不等式的求解问题,含有绝对值的不等式恒成立应用问题,以及绝对值三角不等式的应用,考查了分类讨论思想,是中档题.含有绝对值的不等式恒成立应用问题,关键是等价转化为最值问题,再通过绝对值三角不等式求解最值,从而建立不等关系,求出参数范围.19、(1)(2)【解析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【点睛】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.20、(1)(2)【解析】
(1)将曲线的方程化成直角坐标方程为,当时,线段取得最小值,利用几何法求弦长即可.(2)当点与点不重合时,设,由利用向量的数量积等于可求解,最后验证当点与点重合时也满足.【详解】解曲线的方程化成直角坐标方程为即圆心,半径,曲线为过定点的直线,易知/r/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 分家协议的内容
- 个人的居间协议模板
- 2023装修房子协议书七篇
- 银屑病甲病因介绍
- 竣工验收要点培训课件
- (范文)雕刻机项目立项报告
- 公路工程竣工资料管理 黄 00课件讲解
- 2024年秋江苏名小四年级语文12月月考试卷-A4
- 2023年废弃资源和废旧材料回收加工品项目融资计划书
- 2023年家庭投影仪项目融资计划书
- 内科学糖尿病教案
- 《高尿酸血症》课件
- 微量泵的操作及报警处置课件查房
- 云南省昆明市西山区2023-2024学年七年级上学期期末语文试卷
- 人教版小学数学四年级上册5 1《平行与垂直》练习
- 市政设施养护面年度计划表
- 公差配合与技术测量技术教案
- 坚持教育、科技、人才“三位一体”为高质量发展贡献高校力量
- 污水处理厂工艺设计及计算
- 杭州宇泰机电设备有限公司X射线机室内探伤项目(新建)环境影响报告
- 2023年冷柜行业专题研究报告
评论
0/150
提交评论