版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是()A. B. C. D.2.已知集合,则集合()A. B. C. D.3.的展开式中有理项有()A.项 B.项 C.项 D.项4.如图,在△ABC中,点M是边BC的中点,将△ABM沿着AM翻折成△AB'M,且点B'不在平面AMC内,点P是线段B'C上一点.若二面角P-AM-B'与二面角P-AM-C的平面角相等,则直线AP经过△AB'CA.重心 B.垂心 C.内心 D.外心5.若不等式在区间内的解集中有且仅有三个整数,则实数的取值范围是()A. B.C. D.6.山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为()附:若,则,.A.0.6826 B.0.8413 C.0.8185 D.0.95447.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在中,角所对的边分别为,则的面积.根据此公式,若,且,则的面积为()A. B. C. D.8.某人造地球卫星的运行轨道是以地心为一个焦点的椭圆,其轨道的离心率为,设地球半径为,该卫星近地点离地面的距离为,则该卫星远地点离地面的距离为()A. B.C. D.9.已知七人排成一排拍照,其中甲、乙、丙三人两两不相邻,甲、丁两人必须相邻,则满足要求的排队方法数为().A.432 B.576 C.696 D.96010.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于().A. B. C. D.11.已知函数,且的图象经过第一、二、四象限,则,,的大小关系为()A. B.C. D.12.某四棱锥的三视图如图所示,则该四棱锥的表面积为()A.8 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线-=1(a>0,b>0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_____.14.若,则____.15.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.16.已知函数为上的奇函数,满足.则不等式的解集为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列,其前项和为,满足,,其中,,,.⑴若,,(),求证:数列是等比数列;⑵若数列是等比数列,求,的值;⑶若,且,求证:数列是等差数列.18.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.19.(12分)已知椭圆:的两个焦点是,,在椭圆上,且,为坐标原点,直线与直线平行,且与椭圆交于,两点.连接、与轴交于点,.(1)求椭圆的标准方程;(2)求证:为定值.20.(12分)已知椭圆C的离心率为且经过点(1)求椭圆C的方程;(2)过点(0,2)的直线l与椭圆C交于不同两点A、B,以OA、OB为邻边的平行四边形OAMB的顶点M在椭圆C上,求直线l的方程.21.(12分)已知.(1)求的单调区间;(2)当时,求证:对于,恒成立;(3)若存在,使得当时,恒有成立,试求的取值范围.22.(10分)已知函数.(1)若在上单调递增,求实数的取值范围;(2)若,对,恒有成立,求实数的最小值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】
先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【题目详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,,解得,.因为为偶函数,故直线为其图象的对称轴,令,,故,,因为,故,当时,.故选:A.【答案点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题.2、D【答案解析】
弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【题目详解】因,所以,故,又,,则,故集合.故选:D.【答案点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.3、B【答案解析】
由二项展开式定理求出通项,求出的指数为整数时的个数,即可求解.【题目详解】,,当,,,时,为有理项,共项.故选:B.【答案点睛】本题考查二项展开式项的特征,熟练掌握二项展开式的通项公式是解题的关键,属于基础题.4、A【答案解析】
根据题意P到两个平面的距离相等,根据等体积法得到SΔPB'M【题目详解】二面角P-AM-B'与二面角P-AM-C的平面角相等,故P到两个平面的距离相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P为CB'中点.故选:A.【答案点睛】本题考查了二面角,等体积法,意在考查学生的计算能力和空间想象能力.5、C【答案解析】
由题可知,设函数,,根据导数求出的极值点,得出单调性,根据在区间内的解集中有且仅有三个整数,转化为在区间内的解集中有且仅有三个整数,结合图象,可求出实数的取值范围.【题目详解】设函数,,因为,所以,或,因为时,,或时,,,其图象如下:当时,至多一个整数根;当时,在内的解集中仅有三个整数,只需,,所以.故选:C.【答案点睛】本题考查不等式的解法和应用问题,还涉及利用导数求函数单调性和函数图象,同时考查数形结合思想和解题能力.6、C【答案解析】
根据服从的正态分布可得,,将所求概率转化为,结合正态分布曲线的性质可求得结果.【题目详解】由题意,,,则,,所以,.故果实直径在内的概率为0.8185.故选:C【答案点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.7、A【答案解析】
根据,利用正弦定理边化为角得,整理为,根据,得,再由余弦定理得,又,代入公式求解.【题目详解】由得,即,即,因为,所以,由余弦定理,所以,由的面积公式得故选:A【答案点睛】本题主要考查正弦定理和余弦定理以及类比推理,还考查了运算求解的能力,属于中档题.8、A【答案解析】
由题意画出图形,结合椭圆的定义,结合椭圆的离心率,求出椭圆的长半轴a,半焦距c,即可确定该卫星远地点离地面的距离.【题目详解】椭圆的离心率:,(c为半焦距;a为长半轴),设卫星近地点,远地点离地面距离分别为r,n,如图:则所以,,故选:A【答案点睛】本题主要考查了椭圆的离心率的求法,注意半焦距与长半轴的求法,是解题的关键,属于中档题.9、B【答案解析】
先把没有要求的3人排好,再分如下两种情况讨论:1.甲、丁两者一起,与乙、丙都不相邻,2.甲、丁一起与乙、丙二者之一相邻.【题目详解】首先将除甲、乙、丙、丁外的其余3人排好,共有种不同排列方式,甲、丁排在一起共有种不同方式;若甲、丁一起与乙、丙都不相邻,插入余下三人产生的空档中,共有种不同方式;若甲、丁一起与乙、丙二者之一相邻,插入余下三人产生的空档中,共有种不同方式;根据分类加法、分步乘法原理,得满足要求的排队方法数为种.故选:B.【答案点睛】本题考查排列组合的综合应用,在分类时,要注意不重不漏的原则,本题是一道中档题.10、C【答案解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.11、C【答案解析】
根据题意,得,,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【题目详解】因为,且的图象经过第一、二、四象限,所以,,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,,则|,即,所以.故选:C.【答案点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.12、D【答案解析】
根据三视图还原几何体为四棱锥,即可求出几何体的表面积.【题目详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【答案点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
设点为,由抛物线定义知,,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【题目详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=±x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【答案点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.14、【答案解析】
由,得出,根据两角和与差的正弦公式和余弦公式化简,再利用齐次式即可求出结果.【题目详解】因为,所以,所以.故答案为:.【答案点睛】本题考查三角函数化简求值,利用二倍角正切公式、两角和与差的正弦公式和余弦公式,以及运用齐次式求值,属于对公式的考查以及对计算能力的考查.15、2【答案解析】
运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【题目详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【答案点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.16、【答案解析】
构造函数,利用导数判断出函数的单调性,再将所求不等式变形为,利用函数的单调性即可得解.【题目详解】设,则,设,则.当时,,此时函数单调递减;当时,,此时函数单调递增.所以,函数在处取得极小值,也是最小值,即,,,,即,所以,函数在上为增函数,函数为上的奇函数,则,,则不等式等价于,又,解得.因此,不等式的解集为.故答案为:.【答案点睛】本题主要考查不等式的求解,构造函数,求函数的导数,利用导数和函数单调性之间的关系是解决本题的关键.综合性较强.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)见解析【答案解析】试题分析:(1)(),所以,故数列是等比数列;(2)利用特殊值法,得,故;(3)得,所以,得,可证数列是等差数列.试题解析:(1)证明:若,则当(),所以,即,所以,又由,,得,,即,所以,故数列是等比数列.(2)若是等比数列,设其公比为(),当时,,即,得,①当时,,即,得,②当时,,即,得,③②①,得,③②,得,解得.代入①式,得.此时(),所以,是公比为1的等比数列,故.(3)证明:若,由,得,又,解得.由,,,,代入得,所以,,成等差数列,由,得,两式相减得:即所以相减得:所以所以,因为,所以,即数列是等差数列.18、(1)(2)最大值为【答案解析】
(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值.【题目详解】(1)由消去得曲线的普通方程为.所以的极坐标方程为,即.(2)不妨设,,,,,则当时,取得最大值,最大值为.【答案点睛】本小题主要考查参数方程化为普通方程,普通方程化为极坐标方程,考查极坐标系下线段长度的乘积的最值的求法,考查三角恒等变换,考查三角函数最值的求法,属于中档题.19、(1)(2)证明见解析【答案解析】
(1)根据椭圆的定义可得,将代入椭圆方程,即可求得的值,求得椭圆方程;(2)设直线的方程,代入椭圆方程,求得直线和的方程,求得和的横坐标,表示出,根据韦达定理即可求证为定值.【题目详解】(1)因为,由椭圆的定义得,,点在椭圆上,代入椭圆方程,解得,所以的方程为;(2)证明:设,,直线的斜率为,设直线的方程为,联立方程组,消去,整理得,所以,,直线的直线方程为,令,则,同理,所以:,代入整理得,所以为定值.【答案点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题,属于中档题.20、(1)(2)【答案解析】
(1)根据椭圆的离心率、椭圆上点的坐标以及列方程,由此求得,进而求得椭圆的方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理.根据平行四边形的性质以及向量加法的几何意义得到,由此求得点的坐标,将的坐标代入椭圆方程,化简后可求得直线的斜率,由此求得直线的方程.【题目详解】(1)由椭圆的离心率为,点在椭圆上,所以,且解得,所以椭圆的方程为.(2)显然直线的斜率存在,设直线的斜率为,则直线的方程为,设,由消去得,所以,由已知得,所以,由于点都在椭圆上,所以,展开有,又,所以,经检验满足,故直线的方程为.【答案点睛】本小题主要考查根据椭圆的离心率和椭圆上一点的坐标求椭圆方程,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21、(1)单调减区间为,单调增区间为;(2)详见解析;(3).【答案解析】
试题分析:(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数在上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.试题解析:(1),当时,.解得.当时,解得.所以单调减区间为,单调增区间为.(2)设,当时,由题意,当时,恒成立.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年八年级语文上册 第五单元 第17课《中国石拱桥》教案 新人教版
- 2024-2025学年高中物理 第一章 分子动理论 第1节 物体是由大量分子组成的教案1 粤教版选修3-3
- 04年文化演艺活动组织合同
- 2024年人工智能产品研发与许可合同
- 2024年工程分包合同详细条款及注意事项
- 2024年城市公共交通运营合同具体条款及运营要求
- 2024年工程履约协议
- 2024年工程质量保证合同模板
- 2024年热销用友产品购买协议
- 2024年企业品牌管理与市场推广合同
- DD 2022-1.2 岩心数字化技术规程 第2部分:表面图像数字化
- 全国优质课一等奖初中物理九年级《科学探究:欧姆定律》课件
- 中医外科乳房疾病诊疗规范诊疗指南2023版
- 2023-2024年抖音直播行业现状及发展趋势研究报告
- 新课标-人教版数学六年级上册第五单元《圆》单元教材解读
- 2022湖北汉江王甫洲水力发电有限责任公司招聘试题及答案解析
- 2019新人教必修1unit2Travelling-Around整单元完整教案
- 大学生辩论赛评分标准表
- 诊所污水污物粪便处理方案及周边环境
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 《我是班级的主人翁》的主题班会
评论
0/150
提交评论