![2023学年山东省新泰市二中高三第一次模拟考试数学试卷(含解析)_第1页](http://file4.renrendoc.com/view/2fabe83307bd1242bc10d7186376bd7e/2fabe83307bd1242bc10d7186376bd7e1.gif)
![2023学年山东省新泰市二中高三第一次模拟考试数学试卷(含解析)_第2页](http://file4.renrendoc.com/view/2fabe83307bd1242bc10d7186376bd7e/2fabe83307bd1242bc10d7186376bd7e2.gif)
![2023学年山东省新泰市二中高三第一次模拟考试数学试卷(含解析)_第3页](http://file4.renrendoc.com/view/2fabe83307bd1242bc10d7186376bd7e/2fabe83307bd1242bc10d7186376bd7e3.gif)
![2023学年山东省新泰市二中高三第一次模拟考试数学试卷(含解析)_第4页](http://file4.renrendoc.com/view/2fabe83307bd1242bc10d7186376bd7e/2fabe83307bd1242bc10d7186376bd7e4.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.2.复数的虚部为()A. B. C.2 D.3.直线与圆的位置关系是()A.相交 B.相切 C.相离 D.相交或相切4.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立5.过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为()A. B. C.2 D.6.如图是一个几何体的三视图,则这个几何体的体积为()A. B. C. D.7.若集合,,则A. B. C. D.8.设正项等差数列的前项和为,且满足,则的最小值为A.8 B.16 C.24 D.369.如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若,则λ+μ的值为()A. B. C. D.10.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为()A.2 B.3 C.4 D.511.如图,抛物线:的焦点为,过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是()A.等于4 B.大于4 C.小于4 D.不确定12.已知函数若恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知圆柱的两个底面的圆周在同一个球的球面上,圆柱的高和球半径均为2,则该圆柱的底面半径为__________.14.3张奖券分别标有特等奖、一等奖和二等奖.甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是__________.15.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____16.已知,则展开式的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)己知点,分别是椭圆的上顶点和左焦点,若与圆相切于点,且点是线段靠近点的三等分点.求椭圆的标准方程;直线与椭圆只有一个公共点,且点在第二象限,过坐标原点且与垂直的直线与圆相交于,两点,求面积的取值范围.18.(12分)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.(Ⅰ)写出曲线的极坐标方程,并指出是何种曲线;(Ⅱ)若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.19.(12分)已知.(1)已知关于的不等式有实数解,求的取值范围;(2)求不等式的解集.20.(12分)已知抛物线的焦点为,点,点为抛物线上的动点.(1)若的最小值为,求实数的值;(2)设线段的中点为,其中为坐标原点,若,求的面积.21.(12分)在直角坐标系中,曲线的参数方程是(是参数),以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)在曲线上取一点,直线绕原点逆时针旋转,交曲线于点,求的最大值.22.(10分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【答案点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.2、D【答案解析】
根据复数的除法运算,化简出,即可得出虚部.【题目详解】解:=,故虚部为-2.故选:D.【答案点睛】本题考查复数的除法运算和复数的概念.3、D【答案解析】
由几何法求出圆心到直线的距离,再与半径作比较,由此可得出结论.【题目详解】解:由题意,圆的圆心为,半径,∵圆心到直线的距离为,,,故选:D.【答案点睛】本题主要考查直线与圆的位置关系,属于基础题.4、C【答案解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【题目详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【答案点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.5、C【答案解析】
由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【题目详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线C的左顶点,所以,即,则,故.故选:C【答案点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题.6、A【答案解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.【题目详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.则几何体的体积为.故选:.【答案点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.7、C【答案解析】
解一元次二次不等式得或,利用集合的交集运算求得.【题目详解】因为或,,所以,故选C.【答案点睛】本题考查集合的交运算,属于容易题.8、B【答案解析】
方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,,则,当且仅当时等号成立,从而的最小值为16,故选B.方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B.9、B【答案解析】
建立平面直角坐标系,用坐标表示,利用,列出方程组求解即可.【题目详解】建立如图所示的平面直角坐标系,则D(0,0).不妨设AB=1,则CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得则.故选:B【答案点睛】本题主要考查了由平面向量线性运算的结果求参数,属于中档题.10、D【答案解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.11、A【答案解析】
利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【题目详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【答案点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方程,属于基础题12、D【答案解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【题目详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【答案点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
由圆柱外接球的性质,即可求得结果.【题目详解】解:由于圆柱的高和球半径均为2,,则球心到圆柱底面的距离为1,设圆柱底面半径为,由已知有,∴,即圆柱的底面半径为.故答案为:.【答案点睛】本题考查由圆柱的外接球的性质求圆柱底面半径,属于基础题.14、【答案解析】
利用排列组合公式进行计算,再利用古典概型公式求出不是特等奖的两张的概率即可.【题目详解】解:3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,则两人同时抽取两张共有:种排法排除特等奖外两人选两张共有:种排法.故两人都未抽得特等奖的概率是:故答案为:【答案点睛】本题主要考查古典概型的概率公式的应用,是基础题.15、80211【答案解析】
由,利用二项式定理即可得,分别令、后,作差即可得.【题目详解】由题意,则,令,得,令,得,故.故答案为:80,211.【答案点睛】本题考查了二项式定理的应用,属于中档题.16、【答案解析】
先根据定积分求出的值,再用二项展开式公式即可求解.【题目详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【答案点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、;.【答案解析】
连接,由三角形相似得,,进而得出,,写出椭圆的标准方程;由得,,因为直线与椭圆相切于点,,解得,,因为点在第二象限,所以,,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【题目详解】解:连接,由可得,,,椭圆的标准方程;由得,,因为直线与椭圆相切于点,所以,即,解得,,即点的坐标为,因为点在第二象限,所以,,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大值,所以,即面积的取值范围为.【答案点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.18、(Ⅰ),曲线是以为圆心,为半径的圆;(Ⅱ).【答案解析】
(Ⅰ)由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程.(Ⅱ)令,,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【题目详解】解:(Ⅰ)由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.(Ⅱ)令,,,,面积的取值范围为【答案点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查运算求解能力,属于中档题.19、(1);(2).【答案解析】
(1)依据能成立问题知,,然后利用绝对值三角不等式求出的最小值,即求得的取值范围;(2)按照零点分段法解含有两个绝对值的不等式即可。【题目详解】因为不等式有实数解,所以因为,所以故。①当时,,所以,故②当时,,所以,故③当时,,所以,故综上,原不等式的解集为。【答案点睛】本题主要考查不等式有解问题的解法以及含有两个绝对值的不等式问题的解法,意在考查零点分段法、绝对值三角不等式和转化思想、分类讨论思想的应用。20、(1)的值为或.(2)【答案解析】
(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解.(2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【题目详解】由题,,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【答案点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.21、(1)(2)最大值为【答案解析】
(1)利用消去参数,求得曲线的普通方程,再转化为极坐标方程.(2)设出两点的坐标,求得的表达式,并利用三角恒等变换进行化简,再结合三角函数最值的求法,求得的最大值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物猫寄养协议书
- 2025年2009年劳动合同模板哈尔滨
- 知行合一从知识到实践的青少年科普资源转化路径
- 电子商务平台用户体验设计的心理学原理
- 电动车的商业价值全球市场潜力分析
- 医疗费用申请书
- 2025年中国混凝土活塞行业市场发展前景及发展趋势与投资战略研究报告
- 招标转正申请书范文
- 生活科学-实践与思考的交汇点
- 2025年中国多功能漏电开关市场深度分析及投资战略咨询报告
- 稿件修改说明(模板)
- 社会团体法定代表人登记表
- 中小学心理健康教育教师技能培训专题方案
- (完整版)50028-城镇燃气设计规范
- 2020年常见肿瘤AJCC分期手册第八版(中文版)
- 五年级下册生命、生态、安全教案
- 原发性肺癌手术临床路径(最全版)
- 建筑工程施工质量验收规范检验批填写全套表格+示范填写及说明
- 刺五加种植加工项目可行性研究报告写作范文
- 铁路劳动安全《安全生产法》培训PPT课件(带内容)
- 最新公司产品研发部门绩效考核方案
评论
0/150
提交评论