2023学年辽宁大连市普兰店区第二中学高三考前热身数学试卷(含解析)_第1页
2023学年辽宁大连市普兰店区第二中学高三考前热身数学试卷(含解析)_第2页
2023学年辽宁大连市普兰店区第二中学高三考前热身数学试卷(含解析)_第3页
2023学年辽宁大连市普兰店区第二中学高三考前热身数学试卷(含解析)_第4页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为,若抛物线上的点关于直线对称的点恰好在射线上,则直线被截得的弦长为()A. B. C. D.2.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.3.在中,D为的中点,E为上靠近点B的三等分点,且,相交于点P,则()A. B.C. D.4.已知复数z满足(i为虚数单位),则z的虚部为()A. B. C.1 D.5.已知函数(,且)在区间上的值域为,则()A. B. C.或 D.或46.已知命题:是“直线和直线互相垂直”的充要条件;命题:对任意都有零点;则下列命题为真命题的是()A. B. C. D.7.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]8.在菱形中,,,,分别为,的中点,则()A. B. C.5 D.9.函数的图象在点处的切线为,则在轴上的截距为()A. B. C. D.10.复数的虚部为()A.—1 B.—3 C.1 D.211.设函数满足,则的图像可能是A. B.C. D.12.某三棱锥的三视图如图所示,则该三棱锥的体积为A. B. C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.数列满足递推公式,且,则___________.14.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)15.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.16.若函数满足:①是偶函数;②的图象关于点对称.则同时满足①②的,的一组值可以分别是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)将棱长为的正方体截去三棱锥后得到如图所示几何体,为的中点.(1)求证:平面;(2)求二面角的正弦值.18.(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益.根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y51.522.58y与x可用回归方程(其中,为常数)进行模拟.(Ⅰ)若该农户产出的该新奇水果的价格为150元/箱,试预测该新奇水果100箱的利润是多少元.|.(Ⅱ)据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示.(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;(ⅱ)求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值.(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,,.19.(12分)已知为等差数列,为等比数列,的前n项和为,满足,,,.(1)求数列和的通项公式;(2)令,数列的前n项和,求.20.(12分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.21.(12分)4月23日是“世界读书日”,某中学开展了一系列的读书教育活动.学校为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个读书小组(每名学生只能参加一个读书小组)学生抽取12名学生参加问卷调查.各组人数统计如下:小组甲乙丙丁人数12969(1)从参加问卷调查的12名学生中随机抽取2人,求这2人来自同一个小组的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,用表示抽得甲组学生的人数,求随机变量的分布列和数学期望.22.(10分)设首项为1的正项数列{an}的前n项和为Sn,数列的前n项和为Tn,且,其中p为常数.(1)求p的值;(2)求证:数列{an}为等比数列;(3)证明:“数列an,2xan+1,2yan+2成等差数列,其中x、y均为整数”的充要条件是“x=1,且y=2”.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】

由焦点得抛物线方程,设点的坐标为,根据对称可求出点的坐标,写出直线方程,联立抛物线求交点,计算弦长即可.【题目详解】抛物线的焦点为,则,即,设点的坐标为,点的坐标为,如图:∴,解得,或(舍去),∴∴直线的方程为,设直线与抛物线的另一个交点为,由,解得或,∴,∴,故直线被截得的弦长为.故选:B.【答案点睛】本题主要考查了抛物线的标准方程,简单几何性质,点关于直线对称,属于中档题.2、D【答案解析】

利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【题目详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【答案点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.3、B【答案解析】

设,则,,由B,P,D三点共线,C,P,E三点共线,可知,,解得即可得出结果.【题目详解】设,则,,因为B,P,D三点共线,C,P,E三点共线,所以,,所以,.故选:B.【答案点睛】本题考查了平面向量基本定理和向量共线定理的简单应用,属于基础题.4、D【答案解析】

根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【题目详解】因为复数z满足,所以,所以z的虚部为.故选:D.【答案点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.5、C【答案解析】

对a进行分类讨论,结合指数函数的单调性及值域求解.【题目详解】分析知,.讨论:当时,,所以,,所以;当时,,所以,,所以.综上,或,故选C.【答案点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.6、A【答案解析】

先分别判断每一个命题的真假,再利用复合命题的真假判断确定答案即可.【题目详解】当时,直线和直线,即直线为和直线互相垂直,所以“”是直线和直线互相垂直“的充分条件,当直线和直线互相垂直时,,解得.所以“”是直线和直线互相垂直“的不必要条件.:“”是直线和直线互相垂直“的充分不必要条件,故是假命题.当时,没有零点,所以命题是假命题.所以是真命题,是假命题,是假命题,是假命题.故选:.【答案点睛】本题主要考查充要条件的判断和两直线的位置关系,考查二次函数的图象,考查学生对这些知识的理解掌握水平.7、D【答案解析】

由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【题目详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【答案点睛】本题考查了非线性规划的应用,属于基础题.8、B【答案解析】

据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【题目详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,,,,,所以.故选:B.【答案点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.9、A【答案解析】

求出函数在处的导数后可得曲线在处的切线方程,从而可求切线的纵截距.【题目详解】,故,所以曲线在处的切线方程为:.令,则,故切线的纵截距为.故选:A.【答案点睛】本题考查导数的几何意义以及直线的截距,注意直线的纵截距指直线与轴交点的纵坐标,因此截距有正有负,本题属于基础题.10、B【答案解析】

对复数进行化简计算,得到答案.【题目详解】所以的虚部为故选B项.【答案点睛】本题考查复数的计算,虚部的概念,属于简单题.11、B【答案解析】根据题意,确定函数的性质,再判断哪一个图像具有这些性质.由得是偶函数,所以函数的图象关于轴对称,可知B,D符合;由得是周期为2的周期函数,选项D的图像的最小正周期是4,不符合,选项B的图像的最小正周期是2,符合,故选B.12、A【答案解析】由给定的三视图可知,该几何体表示一个底面为一个直角三角形,且两直角边分别为和,所以底面面积为高为的三棱锥,所以三棱锥的体积为,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、2020【答案解析】

可对左右两端同乘以得,依次写出,,,,累加可得,再由得,代入即可求解【题目详解】左右两端同乘以有,从而,,,,将以上式子累加得.由得.令,有.故答案为:2020【答案点睛】本题考查数列递推式和累加法的应用,属于基础题14、【答案解析】

首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【题目详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为.【答案点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).15、【答案解析】

采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【题目详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【答案点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.16、,【答案解析】

根据是偶函数和的图象关于点对称,即可求出满足条件的和.【题目详解】由是偶函数及,可取,则,由的图象关于点对称,得,,即,,可取.故,的一组值可以分别是,.故答案为:,.【答案点睛】本题主要考查了正弦型三角函数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【答案解析】

(1)取的中点,连接、,连接,证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得二面角的余弦值,进而可求得其正弦值.【题目详解】(1)取中点,连接、、,且,四边形为平行四边形,且,、分别为、中点,且,则四边形为平行四边形,且,且,且,所以,四边形为平行四边形,且,四边形为平行四边形,,平面,平面,平面;(2)以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、,,,,设平面的法向量为,由,得,取,则,,,设平面的法向量为,由,得,取,则,,,,,因此,二面角的正弦值为.【答案点睛】本题考查线面平行的证明,同时也考查了利用空间向量法求解二面角,考查推理能力与计算能力,属于中等题.18、(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【答案解析】

(Ⅰ)根据参考数据得到和,代入得到回归直线方程,,再代入求成本,最后代入利润公式;(Ⅱ)(ⅰ)首先分别计算水果箱数在和内的天数,再用编号列举基本事件的方法求概率;(ⅱ)根据频率分布直方图直接计算结果.【题目详解】(Ⅰ)根据题意,,所以,所以.又,所以.所以时,(千元),即该新奇水果100箱的成本为8314元,故该新奇水果100箱的利润.(Ⅱ)(i)根据频率分布直方图,可知水果箱数在内的天数为设这两天分别为a,b,水果箱数在内的天数为,设这四天分别为A,B,C,D,所以随机抽取2天的基本结果为,,,,,,,,,,,,,,,共15种.满足恰有1天的水果箱数在内的结果为,,,,,,,,共8种,所以估计恰有1天的水果箱数在内的概率为.(ⅱ)这11天该农户每天为甲地配送的该新奇水果的箱数的平均值为(箱).【答案点睛】本题考查考查回归直线方程,统计,概率,均值的综合问题,意在考查分析数据,应用数据,解决问题的能力,属于中档题型.19、(1),;(2).【答案解析】

(1)设的公差为,的公比为,由基本量法列式求出后可得通项公式;(2)奇数项分一组用裂项相消法求和,偶数项分一组用等比数列求和公式求和.【题目详解】(1)设的公差为,的公比为,由,.得:,解得,∴,;(2)由,得,为奇数时,,为偶数时,,∴.【答案点睛】本题考查求等差数列和等比数列的通项公式,考查分组求和法及裂项相消法、等差数列与等比数列的前项和公式,求通项公式采取的是基本量法,即求出公差、公比,由通项公式前项和公式得出相应结论.数列求和问题,对不是等差数列或等比数列的数列求和,需掌握一些特殊方法:错位相减法,裂项相消法,分组(并项)求和法,倒序相加法等等.20、(1)(2)点的坐标为【答案解析】

将抛物线方程与圆方程联立,消去得到关于的一元二次方程,抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,,,,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【题目详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个根分别为,(),则,,,,且,,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,,所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【答案点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.21、(1)(2)见解析,【答案解析】

(1)采用分层抽样的方法甲组抽取4人,乙组抽取3人,丙组抽取2人,丁组抽取3人,从参加问卷调查的12名学生中随机抽取2人,基本事件总数为,这两人来自同一小组取法共有,由此可求出所求的概率;(2)从已抽取的甲、丙两个小组的学生中随机抽取2人,而甲、丙两个小组学生分别有4人和2人,所以抽取的两人中是甲组的学生的人数的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量的分布列和数学期望.【题目详解】(1)由题设易得,问卷调查从四个小组中抽取的人数分别为4,3,2,3(人),从参加问卷调查的12名学生中随机抽取两名的取法共有(种),抽取的两名学生来自同一小组的取法共有(种),所以,抽取的两名学生来自同一个小组的概率为(2)由(1)知,在参加问卷调查的12名学生中,来自甲、丙两小组的学生人数分别为4人、2人,所以,抽取的两人中是甲组的学生的人数的可能取值为0,1,2,因为所以随机变量的分布列为:012所求的期望为【答案点睛】此题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查分层抽样、古典概型、排列组合等知识,考查运算能力,属于中档题.22、(1)p=2;(2)见解析(3)见解析【答案解析】

(1)取n=1时,由得p=0或2,计算排除p=0的情况得到答案.(2),则,相减得到3an+1=4﹣Sn+1﹣Sn,再化简得到,得到证明.(3)分别证明充分性和必要性,假设an

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论