空间几何体的表面积和体积(用)_第1页
空间几何体的表面积和体积(用)_第2页
空间几何体的表面积和体积(用)_第3页
空间几何体的表面积和体积(用)_第4页
空间几何体的表面积和体积(用)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柱体、锥体、台体

1、表面积:几何体表面的面积

2、体积:几何体所占空间的大小。表面积和侧面积表面积:立体图形的所能触摸到的面积之和叫做它的表面积。(每个面的面积相加)侧面积指立体图形的各个侧面的面积之和(除去底面)什么是面积?面积:平面图形所占平面的大小S=ababAahBCabhabAr圆心角为n0rc特殊平面图形的面积正三角形的面积正六边形的面积正方形的面积aaa多面体的表面积

一般地,由于多面体是由多个平面围成的空间几何体,其表面积就是各个平面多边形的面积之和.棱柱的表面积=2底面积+侧面积棱锥的表面积=底面积+侧面积侧面积是各个侧面面积之和棱台的表面积=上底面积+下底面积+侧面积作直三棱柱、正三棱锥、正三棱台各一个,找出斜高COBAPD斜高的概念62、分别作出一个圆柱、圆锥、圆台,并找出旋转轴分别经过旋转轴作一个平面,观察得到的轴截面是什么形状的图形.ABCDABCABCD矩形等腰三角形等腰梯形7把直三棱柱侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?8棱柱的侧面展开图是什么?如何计算它的表面积?h正棱柱的侧面展开图2.棱柱的展开图及表面积求法思考:把圆柱的侧面沿着一条母线展开,分别得到什么图形?展开的图形与原图有什么关系?宽=长方形10圆柱的侧面展开图是矩形3.圆柱的展开图及表面积求法圆柱O把正三棱锥侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?12侧面展开正五棱锥的侧面展开图棱锥的展开图思考:把圆锥的侧面沿着一条母线展开,得到什么图形?展开的图形与原图有什么关系?扇形14圆锥的侧面展开图是扇形O圆锥把正三棱台侧面沿一条侧棱展开,得到什么图形?侧面积怎么求?(类比梯形的面积)16侧面展开h'h'正四棱台的侧面展开图棱台的侧面展开图是什么?如何计算它的表面积?棱台的展开图参照圆柱和圆锥的侧面展开图,试想象圆台的侧面展开图是什么.OO’圆台的侧面展开图是扇环圆台思考:把圆台的侧面沿着一条母线展开,得到什么图形?展开的图形与原图有什么关系?扇环19OO’圆柱、圆锥、圆台三者的表面积公式之间有什么关系?Or’=r上底扩大Or’=0上底缩小棱柱、棱锥、棱台都是由多个平面图形围成的几何体,h'棱柱、棱锥、棱台的表面积它们的侧面展开图还是平面图形,计算它们的表面积就是计算它的各个侧面面积和底面面积之和例1:一个正三棱台的上、下底面边长分别是3cm和6cm,高是3/2cm,求三棱台的侧面积.分析:关键是求出斜高,注意图中的直角梯形ABCC1A1B1O1ODD1E22小结:1、弄清楚柱、锥、台的侧面展开图的形状是关键;

2、对应的面积公式C’=0C’=CS圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)lr1=0r1=r223

例3已知棱长为a,各面均为等边三角形的四面体S-ABC,求它的表面积.DBCAS分析:四面体的展开图是由四个全等的正三角形组成.因为BC=a,所以:因此,四面体S-ABC

的表面积.交BC于点D.解:先求的面积,过点S作,24几何体占有空间部分的大小叫做它的体积一、体积的概念与公理:公理1、长方体的体积等于它的长、宽、高的积V长方体=abc推论1、长方体的体积等于它的底面积s和高h的积V长方体=sh推论2、正方体的体积等于它的棱长a的立方V正方体=a3公理2、夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。PQ幂势既同,则积不容异祖暅原理定理1:柱体(棱柱、圆柱)的体积等于它的底面积s和高h的积。V柱体=sh二:柱体的体积推论:底面半径为r,高为h圆柱的体积是V圆柱=r2h三:锥体体积例2:

如图:三棱柱AD1C1-BDC,底面积为S,高为h.

ABD

C

D1C1CDA

BCD1ADCC1D1A答:可分成棱锥A-D1DC,

棱锥A-D1C1C,

棱锥A-BCD.

问:(1)从A点出发棱柱能分割成几个三棱锥?3.1.锥体(棱锥、圆锥)的体积(底面积S,高h)

注意:三棱锥的顶点和底面可以根据需要变换,四面体的每一个面都可以作为底面,可以用来求点到面的距离问题:锥体(棱锥、圆锥)的体积30定理︰如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:推论:如果圆锥的底面半径是r,高是h,那么它的体积是:

hSSV锥体=ShV圆锥=πr2hShss/ss/hx四.台体的体积V台体=上下底面积分别是s/,s,高是h,则推论:如果圆台的上,下底面半径是r1.r2,高是h,那么它的体积是:

V圆台=πh五.柱体、锥体、台体的体积公式之间有什么关系?S为底面面积,h为柱体高S分别为上、下底面面积,h为台体高S为底面面积,h为锥体高上底扩大上底缩小例从一个正方体中,如图那样截去4个三棱锥后,得到一个正三棱锥A-BCD,求它的体积是正方体体积的几分之几?35RR球的体积:一个半径和高都等于R的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得的几何体的体积与一个半径为R的半球的体积相等。探究36RR37第一步:分割O球面被分割成n个网格,表面积分别为:则球的表面积:则球的体积为:设“小锥体”的体积为:O知识点三、球的表面积和体积(38O第二步:求近似和O由第一步得:39第三步:转化为球的表面积如果网格分的越细,则:①

由①②得:②

球的体积:的值就趋向于球的半径RO“小锥体”就越接近小棱锥。40(1)若球的表面积变为原来的2倍,则半径变为原来的—倍。(2)若球半径变为原来的2倍,则表面积变为原来的—倍。(3)若两球表面积之比为1:2,则其体积之比是———。(4)若两球体积之比是1:2,则其表面积之比是———。例2:41例3.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积。ABCDD1C1B1A1OABCDD1C1B1A1O分析:正方体内接于球,则由球和正方体都是中心对称图形可知,它们中心重合,则正方体对角线与球的直径相等。略解:变题1.如果球O和这个正方体的六个面都相切,则有S=——。变题2.如果球O和这个正方体的各条棱都相切,则有S=——。关键:找正方体的棱长a与球半径R之间的关系42OABC例4已知过球面上三点A、B、C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=2cm,求球的体积,表面积.解:如图,设球O半径为R,截面⊙O′的半径为r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论