2023学年上海财大北郊高级中学高三第三次模拟考试数学试卷(含解析)_第1页
2023学年上海财大北郊高级中学高三第三次模拟考试数学试卷(含解析)_第2页
2023学年上海财大北郊高级中学高三第三次模拟考试数学试卷(含解析)_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023学年高考数学模拟测试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,当时,,则()A. B. C.1 D.2.已知,函数在区间上恰有个极值点,则正实数的取值范围为()A. B. C. D.3.幻方最早起源于我国,由正整数1,2,3,……,这个数填入方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫阶幻方.定义为阶幻方对角线上所有数的和,如,则()A.55 B.500 C.505 D.50504.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为()A. B. C. D.25.已知函数,若,则的取值范围是()A. B. C. D.6.我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”(注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是()A. B. C. D.7.设复数满足,在复平面内对应的点为,则()A. B. C. D.8.已知是等差数列的前项和,,,则()A.85 B. C.35 D.9.已知函数(,)的一个零点是,函数图象的一条对称轴是直线,则当取得最小值时,函数的单调递增区间是()A.() B.()C.() D.()10.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.11.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.212.已知盒中有3个红球,3个黄球,3个白球,且每种颜色的三个球均按,,编号,现从中摸出3个球(除颜色与编号外球没有区别),则恰好不同时包含字母,,的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,,,则______.14.已知数列是等比数列,,则__________.15.如图,从一个边长为的正三角形纸片的三个角上,沿图中虚线剪出三个全等的四边形,余下部分再以虚线为折痕折起,恰好围成一个缺少上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底,则所得正三棱柱的体积为______.16.若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.18.(12分)已知在中,a、b、c分别为角A、B、C的对边,且.(1)求角A的值;(2)若,设角,周长为y,求的最大值.19.(12分)已知数列中,(实数为常数),是其前项和,且数列是等比数列,恰为与的等比中项.(1)证明:数列是等差数列;(2)求数列的通项公式;(3)若,当时,的前项和为,求证:对任意,都有.20.(12分)已知函数f(x)=x(1)讨论fx(2)当x≥-1时,fx+a21.(12分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.22.(10分)如图,已知抛物线:与圆:()相交于,,,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【答案解析】

由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值.【题目详解】,时,,,∴,由题意,∴.故选:A.【答案点睛】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键.2、B【答案解析】

先利用向量数量积和三角恒等变换求出,函数在区间上恰有个极值点即为三个最值点,解出,,再建立不等式求出的范围,进而求得的范围.【题目详解】解:令,解得对称轴,,又函数在区间恰有个极值点,只需解得.故选:.【答案点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成或的形式;(2)根据自变量的范围确定的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围.3、C【答案解析】

因为幻方的每行、每列、每条对角线上的数的和相等,可得,即得解.【题目详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以阶幻方对角线上数的和就等于每行(或每列)的数的和,又阶幻方有行(或列),因此,,于是.故选:C【答案点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.4、B【答案解析】

首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.【题目详解】根据圆柱的三视图以及其本身的特征,将圆柱的侧面展开图平铺,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.5、B【答案解析】

对分类讨论,代入解析式求出,解不等式,即可求解.【题目详解】函数,由得或解得.故选:B.【答案点睛】本题考查利用分段函数性质解不等式,属于基础题.6、B【答案解析】

先列举出不超过的素数,并列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【题目详解】不超过的素数有:、、、、、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、、、、、、、、、、、、、、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、、、,共种情况,因此,所求事件的概率为.故选:B.【答案点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.7、B【答案解析】

设,根据复数的几何意义得到、的关系式,即可得解;【题目详解】解:设∵,∴,解得.故选:B【答案点睛】本题考查复数的几何意义的应用,属于基础题.8、B【答案解析】

将已知条件转化为的形式,求得,由此求得.【题目详解】设公差为,则,所以,,,.故选:B【答案点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.9、B【答案解析】

根据函数的一个零点是,得出,再根据是对称轴,得出,求出的最小值与对应的,写出即可求出其单调增区间.【题目详解】依题意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值为.因为,所以().又,所以,所以,令(),则().因此,当取得最小值时,的单调递增区间是().故选:B【答案点睛】此题考查三角函数的对称轴和对称点,在对称轴处取得最值,对称点处函数值为零,属于较易题目.10、D【答案解析】

根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【题目详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【答案点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.11、D【答案解析】

根据抛物线的定义求得,由此求得的长.【题目详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【答案点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.12、B【答案解析】

首先求出基本事件总数,则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”,记事件“恰好不同时包含字母,,”为,利用对立事件的概率公式计算可得;【题目详解】解:从9个球中摸出3个球,则基本事件总数为(个),则事件“恰好不同时包含字母,,”的对立事件为“取出的3个球的编号恰好为字母,,”记事件“恰好不同时包含字母,,”为,则.故选:B【答案点睛】本题考查了古典概型及其概率计算公式,考查了排列组合的知识,解答的关键在于正确理解题意,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】

由已知利用同角三角函数的基本关系式可求得,的值,由两角差的正弦公式即可计算得的值.【题目详解】,,,,,,,,.故答案为:【答案点睛】本题主要考查了同角三角函数的基本关系、两角差的正弦公式,需熟记公式,属于基础题.14、【答案解析】

根据等比数列通项公式,首先求得,然后求得.【题目详解】设的公比为,由,得,故.故答案为:【答案点睛】本小题主要考查等比数列通项公式的基本量计算,属于基础题.15、1【答案解析】

由题意得正三棱柱底面边长6,高为,由此能求出所得正三棱柱的体积.【题目详解】如图,作,交于,,由题意得正三棱柱底面边长,高为,所得正三棱柱的体积为:.故答案为:1.【答案点睛】本题考查立体几何中的翻折问题、正三棱柱体积的求法、三棱柱的结构特征等基础知识,考查空间想象能力、运算求解能力,求解时注意翻折前后的不变量.16、【答案解析】

把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案.【题目详解】,,则,的共轭复数在复平面内对应点的坐标为,故答案为【答案点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【答案解析】

(1)利用分段讨论法去掉绝对值,结合图象,从而求得不等式的解集;(2)求出函数的最小值,把问题化为,从而求得的取值范围.【题目详解】(1)当时,则所以不等式的解集为.(2)等价于,而,故等价于,所以或,即或,所以实数a的取值范围为.【答案点睛】本题考查含有绝对值的不等式解法、不等式恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度一般.18、(1);(2).【答案解析】

(1)利用正弦定理,结合题中条件,可以得到,之后应用余弦定理即可求得;(2)利用正弦定理求得,求出三角形的周长,利用三角函数的最值求解即可.【题目详解】(1)由已知可得,结合正弦定理可得,∴,又,∴.(2)由,及正弦定理得,∴,,故,即,由,得,∴当,即时,.【答案点睛】该题主要考查的是有关解三角形的问题,解题的关键是掌握正余弦定理,属于简单题目.19、(1)见解析(2)(3)见解析【答案解析】

(1)令可得,即.得到,再利用通项公式和前n项和的关系求解,(2)由(1)知,.设等比数列的公比为,所以,再根据恰为与的等比中项求解,(3)由(2)得到时,,,求得,再代入证明。【题目详解】(1)解:令可得,即.所以.时,可得,当时,所以.显然当时,满足上式.所以.,所以数列是等差数列,(2)由(1)知,.设等比数列的公比为,所以,恰为与的等比中项,所以,解得,所以(3)时,,,而时,,,所以当时,.当时,,∴对任意,都有,【答案点睛】本题主要考查数列的通项公式和前n项和的关系,等差数列,等比数列的定义和性质以及数列放缩的方法,还考查了转化化归的思想和运算求解的能力,属于难题,20、(1)见解析;(2)-∞,1【答案解析】

(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).对a分类讨论,即可得出单调性.

(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,当x=-1时,0≤-1e+1恒成立.当x>-1时,a≤xe【题目详解】解法一:(1)f①当a≤0时,x(-∞-1(-1,+∞)f-0+f(x)↘极小值↗所以f(x)在(-∞,-1)上单调递减,在(-1,+∞)单调递增.②当a>0时,f'(x)=0的根为x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,-1),(lna,+∞)上单调递增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗极大值↘极小值↗所以f(x)在(-∞,lna),(-1,+∞)上单调递增,在综上:当a≤0时,f(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增;当0<a<1e时,f(x)在(-∞,lna),自a=1e时,f(x)在当a>1e时,f(x)在(-∞,-1),(ln(2)因为xex-ax-a+1≥0当x=-1时,0≤-1当x>-1时,a≤x令g(x)=xex设h(x)=e因为h'(x)=e即hx=e又因为h0=0,所以g(x)=xex则g(x)min=g(0)=1综上,a的取值范围为-∞,1.解法二:(1)同解法一;(2)令g(x)=f(x)+a所以g'当a≤0时,g'(x)≥0,则g(x)在所以g(x)≥g(-1)=-1当0<a≤1时,令h(x)=e因为h'(x)=2ex+x又因为h-1=-a<0,所以h(x)=ex+xexx(-1x(g-0+g(x)↘极小值↗g==-e当a>1时,g(0)=-a+1<0,不满足题意.综上,a的取值范围为-∞,1.【答案点睛】本题考查了利用导数研究函数的单调性极值与最值、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.21、(Ⅰ),.(Ⅱ)见解析【答案解析】

(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【题目详解】(Ⅰ)解:由题,得当时,,得;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论