机械振动项目(英汉)Mechanical vibration report_第1页
机械振动项目(英汉)Mechanical vibration report_第2页
机械振动项目(英汉)Mechanical vibration report_第3页
机械振动项目(英汉)Mechanical vibration report_第4页
机械振动项目(英汉)Mechanical vibration report_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IntroductionInourdailylife,vibrationcanbesaidtobeeverywhere,andtheimpactofvibrationonourproductionandlifeisalsogoodandbad.Toimprovetheefficiencyoflargemetallurgicalcoalindustryengineering,vibratoryroller,paverhighwayconstruction,butalsoharmfulvibration:largeequipmentoflargecentrifugalcompressor,nuclearmainpump,aviationturbineengineoncetheconsequencesofunstablevibrationwillbring.Howtomakeuseoftheadvantagesofgoodvibrationandavoidtheharmitbrings,itshouldbeanalyzedfromthemodalanalysisoftheactualstructure.Suchasthevibrationsystem,whichiswidelyusedinthefieldofaerospaceengines,suchasthecombustionchamber,compressor,turbine,etc..Forsuchasystem,inthecourseofoperation,itcanincludevibration,aswellasitsstrengthandstiffnesscanbeartheload,itisrequiredtodesignandcalculate,aheadoftheexperiment.UseMATLABsoftwaretosimulatetheactualvibrationofeachordernaturalfrequencyandnormalmode,itisfoundthatthenaturalfrequencyandthemainformationscanbeobtainedveryeasilyandquickly.在我们的生活中,振动可以说是无处不在,而振动给我们生产和生活带来的影响也是有好有坏。提高对大型冶金煤炭工业工程的效率,振动压路机、摊铺机等公路建设,也有有害的振动:大型离心压缩机、核电站主泵、涡轮航空发动机等大型设备一旦出现不稳定的振动将带来的后果。如何利用好好振动的好处,避免它所带来的危害,就应该先从对实际结构的模态进行分析。如课题所示的振动系统,这是一种在航空发动机领域中广泛应用的盘式轴系统,如燃烧室、压气机、涡轮等。对于这样一个系统,在运行过程中,它可以包括振动,以及它的强度和刚度能否承受负载,它是需要设计和计算,通过实验提前。利用MATLAB软件来模拟实际的振动得到的各阶固有频率和正常模式,可以很方便快捷地得到它的固有频率和主阵型。ContentsChap.1MatrixIterationmethodfornaturalfrequenciesandnormalmodesPart1knowledgeoftheory………………….……..5Part2ProgrammingCgramcode.......................................................................62.Theresultofprogramming....................................................73.Modeshapecurve................................................................8Chap.2TransfermatrixmethodfornaturalfrequenciesandnormalmodesPart1.knowledgeoftheory........................................................9Part2ProgrammingCgramcode.......................................................................102.Theresultofprogramming....................................................113.Modeshapecurve................................................................12Chap3:checktheanswer:(eigenvalueandeigenvetermethod)1.programcode.......................................................................132.Theresultofprogramming...................................................133.conclusions...........................................................................14Chap4:thecomparsionandanalysisoftwomethods……….….……14Conclusion………….…….161固有频率和主阵型矩阵迭代法1.1理论知识................................................................................51.2程序设计计算1.2.1程序代码.............................................................................61.2.2结果.....................................................................................71.2.3振型曲线.............................................................................82固有频率和主阵型的传递矩阵法2.1理论知识………........................................................92.2程序代码2.2.1程序代码.........................................................................….102.2.2结果...................................................................................112.2.3振型曲线...........................................................................123检查答案:(特征值和特征向量法)3.1程序代码..............................................................................133.2结果......................................................................................133.3结论......................................................................................144两种方法的比较和分析...........................................................14结论...........................................................................................16Chap.1MatrixIterationmethodfornaturalfrequenciesandnormalmodes固有频率和主阵型的矩阵迭代法Part1knowledgeoftheory理论知识NaturalFrequency固有频率Initialassumption假设阵型:[D]{A}0[D]=[D]{A}1[D]=a2{A}2i……[D]{A}k-1[D]=If{A}k={A}k-1,ω1=1a1.Iterationequation迭代方程([K]-ω2[M])When{A}={Ai}wehave[K]-1[M]{Ai}=2.[D]=[K]-13.{A}0=C1{A1}+C2{A2}+[D]{Ai}=1ω[D]{A}0=[D](C1{A1}+C2{A2}+⋯=C1ω12{A1}+C2ω22{APart2ProgrammingCalculation程序计算1.Programcode程序代码clcclearn=8;p=7800;Pi=3.14159;d1=0.4;h=0.04;m=p*0.25*Pi*(d1^2)*h;J=0.5*m*0.25*d1^2;a=0.12;d2=0.04;G=7.69e10;k=Pi*G*(d2^4)/(32*a);J=[J0000000;0J000000;00J00000;000J0000;0000J000;00000J00;000000J0;0000000J];K=[k-k000000;-k2*k-k00000;0-k2*k-k0000;00-k2*k-k000;000-k2*k-k00;0000-k1.2*k-0.2*k0;00000-0.2*k1.2*k-k;000000-kk];alf=1;K=K+alf*J;D=inv(K)*J;forj=1:nifj>1D=D*(eye(n)-B*B'*J/(B'*J*B));endA=[10000000]';fori=1:100B=D*A;a1=B(n);B=B/a1;ifmax(abs(B-A))<0.0001omg(j)=1/sqrt(a1);omg(j)=sqrt(abs(omg(j)^2-alf));MM(:,j)=B;breakendA=B;endendomgf=omg/(2*Pi)MMFP=[00000000;MM];plot(FP)holdonzero=[00000000];plot(zero)gridon2.Theresultofprogramming计算结果omg=0.0001135.9690267.1824465.0354640.9083664.6574787.7501876.1578f=0.000021.640242.523474.0127102.0038105.7836125.3744139.4450MM=1.0000-0.58282.1438-4.61571.0012-0.343311.8098-26.49651.0000-0.53031.39870.2444-1.00120.3952-23.872772.53321.0000-0.43010.16734.8472-1.00110.283512.5729-99.52711.0000-0.2912-1.12224.34641.0013-0.438011.0342100.38971.0000-0.1261-2.0217-0.73081.0011-0.2173-23.8439-74.89321.00000.0504-2.2185-5.0387-1.00130.470613.315029.73131.00000.91000.6525-0.0528-0.9999-1.1508-2.0151-2.73751.00001.00001.00001.00001.00001.00001.00001.00003.Modeshapecurve振型曲线Thenaturalfrequencyofvibrationmode振动模态Chap.2Transfermatrixmethodfornaturalfrequenciesandnormalmodes固有频率和主阵型的传递矩阵法Part1.knowledgeoftheory理论知识Separatingtheshaftfromtherotatingdisk,wecanwritingthefollowingequationsandexpresstheminthematrixformSuperscriptsLandRrepresenttheleftandrightsidesofthemembers.从旋转盘分离轴,我们可以用如下方程和矩阵形式表达出来,字母L和R是左、右两侧的部分。Forthedisk:对于圆盘Fortheshaft:对于轴Thematrixpertainingtothediskiscalledthepointmatrixandthematrixassociatedwiththeshaft,thefieldshaft.Thetwocanbecombinedtoestablishthetransfermatrixforthenthelement,whichis:有关圆盘矩阵称为点矩阵和相关矩阵的轴,轴的领域。两者可以联合建立的n个单元的传递矩阵,即:Part2ProgrammingCalculation编程计算1.Programcode程序代码clcclearn=8;p=7800;Pi=3.14159;d1=0.4;h=0.04;m=p*0.25*Pi*(d1^2)*h;J=0.5*m*0.25*d1^2;a=0.12;d2=0.04;G=7.69e10;k=Pi*G*(d2^4)/(32*a);%NaturalfrequenciesJ=[JJJJJJJJ];K=[kkkkkk0.2*kk];step=1;mn=1;T21p=0;fori=1:2000omg(i)=(i-1)*step;T=eye(2);forj=1:nT=[11/K(j);-omg(i)^2*J(j)1-omg(i)^2*J(j)/K(j)]*T;endT21(i)=T(2,1);z(i)=0;ifT(2,1)==0omr(mn)=omg(i);mn=mn+1;endifT(2,1)*T21p<0omr(mn)=omg(i)-abs(T(2,1))*step/(abs(T21p)+abs(T(2,1)));mn=mn+1;endifmn>nbreakendT21p=T(2,1);endomr;f=omr/2/pi%Normalmodesfori=1:nSV(:,1)=[10]';forj=1:nSV(:,j+1)=[11/K(j);-omr(i)^2*J(j)1-omr(i)^2*J(j)/K(j)]*SV(:,j);endMM(:,i)=SV(1,:);endforw=1:nMM(:,w)=MM(:,w)/MM(1,w);endMMplot(MM)zero=[000000000];holdonplot(zero)gridon2.Theresultofprogramming编程结果f=021.640442.523474.0132102.0074105.7820125.3738139.4441MM=1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00000.91000.6524-0.0529-1.0000-1.1508-2.0212-2.73741.00000.73810.0781-1.0501-1.0000-0.82651.06413.75601.00000.4997-0.5233-0.94161.00001.27540.9345-3.78821.00000.2164-0.94290.15831.00000.6342-2.01852.82571.0000-0.0864-1.03481.0915-1.0000-1.37101.1268-1.12121.0000-1.56160.30420.0115-0.99963.3463-0.16840.09561.0000-1.71610.4662-0.21660.9997-2.90730.0814-0.01843.Thecurveofmodeshape模态曲线Chap.3checktheanswer:(eigenvalueandeigenvetormethod)结果检查:(特征值和特征向量法)1.Programming程序代码:%clc%clearn=8;p=7800;Pi=3.14159;d1=0.4;h=0.04;m=p*0.25*Pi*(d1^2)*h;J=0.5*m*0.25*d1^2;a=0.12;d2=0.04;G=7.69e10;k=Pi*G*(d2^4)/(32*a);J=[J0000000;0J000000;00J00000;000J0000;0000J000;00000J00;000000J0;0000000J];K=[k-k000000;-k2*k-k00000;0-k2*k-k0000;00-k2*k-k000;000-k2*k-k00;0000-k1.2*k-0.2*k0;00000-0.2*k1.2*k-k;000000-kk];D=inv(J)*K;[Alam]=eig(D);fori=1:nomg(i)=sqrt(abs(lam(i,i)));endomgf=omg/(2*Pi)2.Theresult结果omg=0.0000135.9711267.1842465.0390640.9295664.6586787.7505876.1578f=0.000021.640542.523774.0133102.0072105.7838125.3745139.44503.Conclusion结论Fromtheaboveresults,wecanclearlyseethattheresultsareverysimilartothetheoreticalvaluescalculatedusingmatrixiterationandtransfermatrix.Therefore,wecanthinkthattheapproximatecalculationresultshavecertainreferencevalue.从上述结果过程中,我们可以很清晰地看到,使用矩阵迭代和转移矩阵计算的理论值结果是十分相近的。因此,我们可以认为近似计算结果具有一定的参考价值。Chap.4Thecomparsionandanalysisoftwomethods对这两种方法的比较与分析Accordingtopreviousanalysis,wecanconcludethemodeshapeoftwomethodsasfollows:(normalmodes)根据前面的分析,我们可以得出如下结论:(主阵型)MatrixIteration:矩阵迭代法:1.0000-0.58282.1438-4.61571.0012-0.343311.8098-26.49651.0000-0.53031.39870.2444-1.00120.3952-23.872772.53321.0000-0.43010.16734.8472-1.00110.283512.5729-99.52711.0000-0.2912-1.12224.34641.0013-0.438011.0342100.38971.0000-0.1261-2.0217-0.73081.0011-0.2173-23.8439-74.89321.00000.0504-2.2185-5.0387-1.00130.470613.315029.73131.00000.91000.6525-0.0528-0.9999-1.1508-2.0151-2.73751.00001.00001.00001.00001.00001.00001.00001.0000Transfermatrix:传递矩阵法:1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00000.91000.6524-0.0529-1.0000-1.1508-2.0212-2.73741.00000.73810.0781-1.0501-1.0000-0.82651.06413.75601.00000.4997-0.5233-0.94161.00001.27540.9345-3.78821.00000.2164-0.94290.15831.00000.6342-2.01852.82571.0000-0.0864-1.03481.0915-1.0000-1.37101.1268-1.12121.0000-1.56160.30420.0115-0.99963.3463-0.16840.09561.0000-1.71610.4662-0.21660.9997-2.90730.0814-0.0184Aswecannotcomparethenormalmodesoftwomethodsdirectly,wechangethematrixasfollows:由于我们不能直接比较法的主阵型,我们改变了矩阵如下:1.usingthecirculationforw=1:nMM(:,w)=MM(:,w)/MM(1,w);endMM2.resultsMatrixIteration:1.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00001.00000.91000.6524-0.0529-1.0000-1.150

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论