版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.2.函数y=-x2-3的图象顶点是()A. B. C. D.3.已知关于的一元二次方程有两个相等的实数根,则锐角等于()A. B. C. D.4.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为()A.1234 B.4312 C.3421 D.42315.已知⊙O的半径是4,OP=5,则点P与⊙O的位置关系是()A.点P在圆上 B.点P在圆内 C.点P在圆外 D.不能确定6.如图,某超市自动扶梯的倾斜角为,扶梯长为米,则扶梯高的长为()A.米 B.米 C.米 D.米7.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A.15° B.20° C.25° D.30°8.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为()A. B.C. D.9.桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是()A. B. C. D.10.若点A(1,y1),B(2,y2),C(﹣2,y3)都在反比例函数y=(k>0)的图象上,则y1,y2,y3的大小关系是()A.<< B.<< C.<< D.<<二、填空题(每小题3分,共24分)11.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.12.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.13.现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为.14.抛物线y=(x﹣1)2+3的对称轴是直线_____.15.如图所示的抛物线形拱桥中,当拱顶离水面2m时,水面宽4m.如果以拱顶为原点建立直角坐标系,且横轴平行于水面,那么拱桥线的解析式为_____.16.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是.17.反比例函数的图象经过点,,点是轴上一动点.当的值最小时,点的坐标是__________.18.在一只不透明的袋中,装着标有数字,,,的质地、大小均相同的小球.小明和小东同时从袋中随机各摸出个球,并计算这两球上的数字之和,当和小于时小明获胜,反之小东获胜.则小东获胜的概率_______.三、解答题(共66分)19.(10分)如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的)右侧),与y轴相交于点C(0,﹣3).(1)求抛物线的函数表达式;(2)判断△BCM是否为直角三角形,并说明理由.(3)抛物线上是否存在点N(不与点C重合),使得以点A,B,N为顶点的三角形的面积与S△ABC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.20.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.21.(6分)为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:9091899690989097919899979188909795909588(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.22.(8分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,∠CDA=110°,∠ACB=18.5°,∠BCD=16.5°,如图1.请根据测量结果计算“大帆船”AB的长度.(结果精确到0.1m,参考数据:sin16.5°≈0.45,tan16.5°≈0.50,≈1.41,≈1.73)23.(8分)如图,已知二次函数G1:y=ax2+bx+c(a≠0)的图象过点(﹣1,0)和(0,3),对称轴为直线x=1.(1)求二次函数G1的解析式;(2)当﹣1<x<2时,求函数G1中y的取值范围;(3)将G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是.(4)当直线y=n与G1、G2的图象共有4个公共点时,直接写出n的取值范围.24.(8分)有六张完全相同的卡片,分两组,每组三张,在组的卡片上分别画上“√,×,√”,组的卡片上分别画上“√,×,×”,如图①所示.(1)若将卡片无标记的一面朝上摆在桌上,再分别从两组卡片中随机各抽取一张,求两张卡片上标记都是“√”的概率(请用“树形图法”或“列表法”求解).(2)若把两组卡片无标记的一面对应粘贴在一起得到三张卡片,其正、反面标记如图②所示,将卡片正面朝上摆在桌上,并用瓶盖盖住标记.①若随机揭开其中一个盖子,看到的标记是“√”的概率是多少?②若揭开盖子,看到的卡片正面标记是“√”后,猜想它的反面也是“√”,求猜对的概率.25.(10分)解方程:2x2﹣4x+1=1.26.(10分)已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m,n的值,(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,若点B与点M(﹣4,6)关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出y1>y2时x的取值范围.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;
故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.2、C【解析】函数y=-x2-3的图象顶点坐标是(0,-3).故选C.3、D【分析】根据一元二次方程根的判别式等于零,求出的值,进而即可得到答案.【详解】∵关于的一元二次方程有两个相等的实数根,∴∆=,解得:,∴=.故选D.【点睛】本题主要考查一元二次方程根的判别式以及特殊角三角函数,掌握一元二次方程根的判别式与根的关系,是解题的关键.4、B【解析】由于太阳早上从东方升起,则早上树的影子向西;傍晚太阳在西边落下,此时树的影子向东,于是可判断四个时刻的时间顺序.【详解】解:时间由早到晚的顺序为1.
故选B.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.5、C【分析】根据“点到圆心的距离大于半径,则点在圆外”即可解答.【详解】解:∵⊙O的半径是4,OP=5,5>4即点到圆心的距离大于半径,∴点P在圆外,故答案选C.【点睛】本题考查了点与圆的位置关系,通过比较点到圆心的距离与半径的大小确定点与圆的位置关系.6、A【详解】解:由题意,在Rt△ABC中,∠ABC=31°,由三角函数关系可知,
AC=AB•sinα=9sin31°(米).
故选A.【点睛】本题主要考查了三角函数关系在直角三角形中的应用.7、C【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数【详解】∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,
∴∠AOF=90°+40°=130°,OA=OF,
∴∠OFA=(180°-130°)÷2=25°.
故选C.8、C【分析】延长AB交x轴于点G,延长BC交y轴于点H,根据矩形面积求出的面积,通过平行可证明∽,∽,∽,然后利用相似的性质及三等分点可求出、、的面积,再求出四边形BGOH的面积,然后通过反比例函数比例系数的几何意义求出k值,再利用的面积求出b值即可.【详解】延长AB交x轴于点G,延长BC交y轴于点H,如图:∵矩形ABCD的面积为1,∴,∵B、D为线段EF的三等分点,∴,,,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴,即,∴,∵,∴,,∴∽,∴即,∴,∴,∵四边形ABCD是矩形,∴,∵,,∴,,又∵,∴四边形BGOH是矩形,根据反比例函数的比例系数的几何意义可知:,∴,∴又∵,即,∴,∴直线EF的解析式为,令,得,令,即,解得,∴,,∵F点在轴的上方,∴,∴,,∵,即,∴.故选:C.【点睛】本题考查了相似三角形的判定与性质,反比例函数比例系数的几何意义,一次函数与面积的结合,综合性较强,需熟练掌握各性质定理及做题技巧.9、A【详解】∵桌面上放有6张卡片,卡片正面的颜色3张是绿色,2张是红色,1张是黑色,∴抽出的卡片正面颜色是绿色的概率是:.故选A.10、D【分析】先根据反比例函数中k>1判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数y=中k>1,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵﹣2<1,∴点C(﹣2,y2)位于第三象限,∴y2<1,∵1<1<2,∴点A(1,y1),B(2,y2)位于第一象限,∴y1>y2>1.∴y1>y2>y2.故选:D.【点睛】本题考查的是反比例函数的性质,掌握反比例函数图象所在象限及增减性是解答此题的关键.二、填空题(每小题3分,共24分)11、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.12、1【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x1是关于x的方程x1+3x-5=0的两个根,
根据根与系数的关系,得,x1+x1=-3,x1x1=-5,
则x1+x1-x1x1=-3-(-5)=1,
故答案为1.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x1=-3,x1x1=-5是解题的关键.13、【详解】首先根据一元二次方程有实数解可得:4-4(a-2)≥0可得:a≤3,则符合条件的a有0,1,2,3四个;解分式方程可得:x=,∵x≠2,则a≠1,a≠2,综上所述,则满足条件的a为0和3,则P=.考点:(1)、概率;(2)、分式方程的解.14、x=1【解析】解:∵y=(x﹣1)2+3,∴其对称轴为x=1.故答案为x=1.15、y=x1【解析】根据题意以拱顶为原点建立直角坐标系,即可求出解析式.【详解】如图:以拱顶为原点建立直角坐标系,由题意得A(1,−1),C(0,−1),设抛物线的解析式为:y=ax1把A(1,−1)代入,得4a=−1,解得a=−,所以抛物线解析式为y=−x1.故答案为:y=−x1.【点睛】本题考查了二次函数的应用,解决本题的关键是根据题意建立平面直角坐标系.16、.【详解】解:由题意作出树状图如下:一共有36种情况,“两枚骰子朝上的点数互不相同”有30种,所以,P=.考点:列表法与树状图法.17、【分析】先求出A,B点的坐标,找出点B关于y轴的对称点D,连接AD与y足轴交于点C,用待定系数法可求出直线AD的解析式,进而可求出点C的坐标.【详解】解:如下图,作点点B关于y轴的对称点D,连接AD与y足轴交于点C,∵反比例函数的图象经过点,,∴设直线AD解析式为:y=kx+b,将A,D坐标代入可求出:∴直线AD解析式为:∴点的坐标是:故答案为:.【点睛】本题考查的知识点是利用对称求线段的最小值,解题的关键是根据反比例函数求出各点的坐标.18、【分析】根据题意画出树状图,再根据概率公式即可得出答案.【详解】根据题意画图如下:可以看出所有可能结果共有12种,其中数字之和大于等于9的有8种∴P(小东获胜)==故答案为:.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意画出树状图表示所有情况.三、解答题(共66分)19、(1);(2)见解析;(3)存在,(,3),(,3),(,)【分析】(1)用待定系数法求出抛物线解析式即可;
(2)由抛物线解析式确定出抛物线的顶点坐标和与x轴的交点坐标,用勾股定理的逆定理即可;
(3)根据题意得出,然后求出,再代入求解即可.【详解】(1)∵抛物线与轴相交于点C(0,-3).
∴,
∴,
∴抛物线解析式为,
(2)△BCM是直角三角形,
理由:由(1)有,抛物线解析式为,
∴顶点为M的坐标为(-1,-4),
由(1)抛物线解析式为,
令,,
∴,
∴点A的坐标为(1,0),点B的坐标为(-3,0),
∴,,=,∵,∴,
∴△BCM是直角三角形,(3)设N点纵坐标为,根据题意得,即,∴,当N点纵坐标为3时,,解得:当N点纵坐标为-3时,,解得:(与点C重合,舍去),∴N点坐标为(,3),(,3),(,),【点睛】本题主要考查了待定系数法求抛物线解析式,勾股定理的逆定理的应用,图形面积的计算,解本题的关键是利用勾股定理的逆定理判断出△BCM是直角三角形.20、证明见解析.【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED=AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.21、(1)5;3;90;(2)91;(3)估计评选该荣誉称号的最低分数为97分.理由见解析.【解析】(1)由题意即可得出结果;
(2)由20×50%=10,结合题意即可得出结论;
(3)由20×30%=6,即可得出结论.【详解】(1)由题意得:90分的有5个;97分的有3个;出现次数最多的是90分,∴众数是90分;故答案为:5;3;90;(2)20×50%=10,如果该校想确定七年级前50%的学生为“良好”等次,则“良好”等次的测评成绩至少定为91分;故答案为:91;(3)估计评选该荣誉称号的最低分数为97分;理由如下:∵20×30%=6,∴估计评选该荣誉称号的最低分数为97分.【点睛】本题考查了众数、中位数、用样本估计总体等知识;熟练掌握众数、中位数、用样本估计总体是解题的关键.22、“大帆船”AB的长度约为94.8m【分析】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,得BF=AE=CE=(x+40)m,AE=x,列出方程,求出x的值,进而即可求解.【详解】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,易知四边形ABFE是矩形,∴AB=EF,AE=BF.∵∠DCA=∠ACB+∠BCD=18.5°+16.5°=45°,∴BF=AE=CE=(x+40)m.∵∠CDA=110°,∴∠ADE=60°.∴AE=x·tan60°=x,∴x=x+40,解得:x≈54.79(m).∴BF=CE=54.79+40=94.79(m).∴CF=≈189.58(m).∴EF=CF-CE=189.58-94.79≈94.8(m).∴AB=94.8(m).答:“大帆船”AB的长度约为94.8m.【点睛】本题主要考查三角函数的实际应用,添加辅助线,构造直角三角形,熟练掌握三角函数的定义,是解题的关键.23、(1)二次函数G1的解析式为y=﹣x2+2x+3;(2)0<y≤4;(3)y=﹣(x﹣4)2+2;(4)n的取值范围为<n<2或n<.【分析】(1)由待定系数法可得根据题意得解得,则G1的解析式为y=﹣x2+2x+3;(2)将解析式化为顶点式,即y=﹣(x﹣1)2+4,当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2;(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【详解】解:(1)根据题意得解得,所以二次函数G1的解析式为y=﹣x2+2x+3;(2)因为y=﹣(x﹣1)2+4,所以抛物线的顶点坐标为(1,4);当x=﹣1时,y=0;x=2时,y=3;而抛物线的顶点坐标为(1,4),且开口向下,所以当﹣1<x<2时,0<y≤4;(3)G1先向右平移3个单位,再向下平移2个单位,得到新二次函数G2,则函数G2的解析式是y=﹣(x﹣1﹣3)2+4﹣2,即y=﹣(x﹣4)2+2,故答案为y=﹣(x﹣4)2+2.(4)解﹣(x﹣4)2+2═﹣(x﹣1)2+4得x=,代入y=﹣(x﹣1)2+4求得y=,由图象可知当直线y=n与G1、G2的图象共有4个公共点时,n的取值范围为<n<2或n<.【点睛】本题的考点是二次函数的综合应用.方法是根据题意及二次函数图像的性质解题.24、(1);(2)①;②【分析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货车挂靠租赁合同模板
- 西班牙酒吧出租合同模板
- 面设计合同模板
- 父母赠与子女贷款合同模板
- 返聘合同模板 道客巴巴
- 驾校合作合同模板
- 管网土建施工合同模板
- 铺地板合同模板
- 影楼合伙合同模板
- 私立学校教师合同模板
- 家具行业操作人员安全培训手册
- 借贷记账法实例
- 广东省2024年普通高中学业水平合格性考试语文作文导写
- 律所保密管理制度
- 安全培训考试试题(压路机操作工)
- 无人机项目投资计划书
- 03 写景散文阅读训练-20232024学年七年级语文上册知识(考点)梳理与能力训练(解析)
- 基建岗位的职业生涯规划书
- 光伏项目强制性条文执行计划
- 五年级上册语文第一~四单元阶段性综合复习(附答案)
- 压型钢板泄爆屋面施工方案
评论
0/150
提交评论