![2022-2023学年浙江省湖州德清县联考数学九年级上册期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view/0d95bb4d54539e6e599015b8c2ceaca0/0d95bb4d54539e6e599015b8c2ceaca01.gif)
![2022-2023学年浙江省湖州德清县联考数学九年级上册期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view/0d95bb4d54539e6e599015b8c2ceaca0/0d95bb4d54539e6e599015b8c2ceaca02.gif)
![2022-2023学年浙江省湖州德清县联考数学九年级上册期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view/0d95bb4d54539e6e599015b8c2ceaca0/0d95bb4d54539e6e599015b8c2ceaca03.gif)
![2022-2023学年浙江省湖州德清县联考数学九年级上册期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view/0d95bb4d54539e6e599015b8c2ceaca0/0d95bb4d54539e6e599015b8c2ceaca04.gif)
![2022-2023学年浙江省湖州德清县联考数学九年级上册期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view/0d95bb4d54539e6e599015b8c2ceaca0/0d95bb4d54539e6e599015b8c2ceaca05.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,点B,C,D在⊙O上,若∠BCD=30°,则∠BOD的度数是()A.75° B.70° C.65° D.60°2.下列图形:①国旗上的五角星,②有一个角为60°的等腰三角形,③一个半径为π的圆,④两条对角线互相垂直平分的四边形,⑤函数y=的图象,其中既是轴对称又是中心对称的图形有()A.有1个 B.有2个 C.有3个 D.有4个3.若a,b是方程x2+2x-2016=0的两根,则a2+3a+b=()A.2016 B.2015 C.2014 D.20124.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④5.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为()A. B.C. D.6.如图,AB是⊙O的直径,∠AOC=130°,则∠D等于()A.25° B.35° C.50° D.65°7.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:18.下列根式中,是最简二次根式的是()A. B. C. D.9.若点A(﹣2,y1),B(﹣1,y2),C(4,y3)都在二次函数的图象上,则下列结论正确的是()A. B. C. D.10.二次函数的大致图象如图所示,其对称轴为直线,点A的横坐标满足,图象与轴相交于两点,与轴相交于点.给出下列结论:①;②;③若,则;④.其中正确的个数是()A.1 B.2 C.3 D.411.反比例函数的图象经过点,若点在反比例函数的图象上,则n等于()A.-4 B.-9 C.4 D.912.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若是抛物线上两点,则,其中说法正确的是(
)A.①② B.②③ C.①②④ D.②③④二、填空题(每题4分,共24分)13.若双曲线的图象在第二、四象限内,则的取值范围是________.14.从这九个自然数中,任取一个数是偶数的概率是____.15.已知,是方程的两实数根,则__.16.如图,某小型水库栏水坝的横断面是四边形ABCD,DC∥AB,测得迎水坡的坡角α=30°,已知背水坡的坡比为1.2:1,坝顶部DC宽为2m,坝高为6m,则坝底AB的长为_____m.17.如图所示,在中,,垂直平分,交于点,垂足为点,,,则等于___________.18.路灯(P点)距地面高9米,身高1.5的小艺站在距路灯的底部(O点)20米的A点,则此时小艺在路灯下的影子长是__________米.三、解答题(共78分)19.(8分)如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sinB=,tanA=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.20.(8分)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度.21.(8分)如图①,在矩形ABCD中,BC=60cm.动点P以6cm/s的速度在矩形ABCD的边上沿A→D的方向匀速运动,动点Q在矩形ABCD的边上沿A→B→C的方向匀速运动.P、Q两点同时出发,当点P到达终点D时,点Q立即停止运动.设运动的时间为t(s),△PDQ的面积为S(cm2),S与t的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的⊙O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与⊙O有公共点时,求t的取值范围.22.(10分)如图将小球从斜坡的O点抛出,小球的抛出路线可以用二次函数y=ax2+bx刻画,顶点坐标为(4,8),斜坡可以用y=x刻画.(1)求二次函数解析式;(2)若小球的落点是A,求点A的坐标;(3)求小球飞行过程中离坡面的最大高度.23.(10分)某次数学竞赛共有3道判断题,认为正确的写“”,错误的写“”,小明在做判断题时,每道题都在“”或“”中随机写了一个.(1)小明做对第1题的概率是;(2)求小明这3道题全做对的概率.24.(10分)函数的图象的对称轴为直线.(1)求的值;(2)将函数的图象向右平移2个单位,得到新的函数图象.①直接写出函数图象的表达式;②设直线与轴交于点A,与y轴交于点B,当线段AB与图象只有一个公共点时,直接写出的取值范围.25.(12分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.求证:;求证:;直接写出的最小值.26.(1)①如图1,请用直尺(不带刻度)和圆规作出的内接正三角形(按要求作图,不要求写作法,但要保留作图痕迹).②若的内接正三角形边长为6,求的半径;(2)如图2,的半径就是(1)中所求半径的值.点在上,是的切线,点在射线上,且,点从点出发,以每秒1个单位的速度沿射线方向移动,点是上的点(不与点重合),是的切线.设点运动的时间为(秒),当为何值时,是直角三角形,请你求出满足条件的所有值.
参考答案一、选择题(每题4分,共48分)1、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.【详解】∵∠BCD=30°,∴∠BOD=2∠BCD=2×30°=60°.故选:D.【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键.2、C【分析】根据中心对称图形和轴对称图形的定义可得答案.【详解】解:①国旗上的五角星,是轴对称图形,不是中心对称图形;②有一个角为60°的等腰三角形,是轴对称图形,是中心对称图形;③一个半径为π的圆,是轴对称图形,是中心对称图形;④两条对角线互相垂直平分的四边形,是轴对称图形,是中心对称图形;⑤函数y=的图象,不是轴对称图形,是中心对称图形;既是轴对称又是中心对称的图形有3个,故选:C.【点睛】此题主要考查了轴对称图形和中心对称图形,以及反比例函数图象和线段垂直平分线,关键是掌握轴对称图形和中心对称图形定义.3、C【分析】先根据一元二次方程的解的定义得到a2+2a-2016=0,即a2+2a=2016,则a2+3a+b化简为2016+a+b,再根据根与系数的关系得到a+b=-2,然后利用整体代入的方法计算即可.【详解】∵a是方程x2+2x-2016=0的实数根,
∴a2+2a-2016=0,
∴a2=-2a+2016,
∴a2+3a+b=-2a+2016+3a+b=a+b+2016,
∵a、b是方程x2+2x-2016=0的两个实数根,
∴a+b=-2,
∴a2+3a+b=-2+2016=1.
故选:C.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=-,x1•x2=.也考查了一元二次方程的解.4、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.5、D【分析】根据题意利用基本数量关系即商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】解:由题意可列方程是:.故选:D.【点睛】本题考查一元二次方程的应用最基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格.6、A【解析】试题分析:∵AB是⊙O的直径,∴∠BOC=180°-∠AOC=180°-130°=50°,∴∠D=∠BOC=×50°=25°.故选A.考点:圆周角定理7、A【解析】∵两个相似三角形的面积之比为1:4,
∴它们的相似比为1:1,(相似三角形的面积比等于相似比的平方)
∴它们的周长之比为1:1.
故选A.【点睛】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.8、D【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分数),逐一判断即可得答案.【详解】A.=,故该选项不是最简二次根式,不符合题意,B.=,故该选项不是最简二次根式,不符合题意,C.=,故该选项不是最简二次根式,不符合题意,D.是最简二次根式,符合题意,故选:D.【点睛】本题考查了对最简二次根式的理解,被开方数不含有能开的尽方的因式或因数,被开方数不含有分数的二次根式叫做最简二次根式;能熟练地运用定义进行判断是解此题的关键.9、D【分析】先利用顶点式得到抛物线对称轴为直线x=-1,再比较点A、B、C到直线x=-1的距离,然后根据二次函数的性质判断函数值的大小.【详解】解:二次函数的图象的对称轴为直线x=-1,a=-1<0,所以该函数开口向下,且到对称轴距离越远的点对应的函数值越小,A(﹣2,y1)距离直线x=-1的距离为1,B(﹣1,y2)距离直线x=-1的距离为0,C(4,y3)距离距离直线x=-1的距离为5.B点距离对称轴最近,C点距离对称轴最远,所以,故选:D.【点睛】本题考查了二次函数图象上点的坐标特征.熟练掌握二次函数的性质是解决本题的关键.10、C【分析】根据对称轴的位置、开口方向、与y轴的交点可对①②④进行判断,根据,转化为代数,计算的值对③进行判断即可.【详解】解:①∵抛物线开口向下,∴,∵抛物线对称轴为直线,∴,∴∴,故①正确,②∵,,∴,又∵抛物线与y轴交于负半轴,∴,∴,故②错误,③∵点C(0,c),,点A在x轴正半轴,∴A,代入得:,化简得:,又∵,∴即,故③正确,④由②可得,当x=1时,,∴,即,故④正确,所以正确的是①③④,故答案为C.【点睛】本题考查了二次函数中a,b,c系数的关系,根据图象得出a,b,c的的关系是解题的关键.11、A【分析】将点(-2,6)代入得出k的值,再将代入即可【详解】解:∵反比例函数的图象经过点,∴k=(-2)×6=-12,∴又点(3,n)在此反比例函数的图象上,
∴3n=-12,
解得:n=-1.
故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.12、A【分析】根据二次函数的图像和性质逐个分析即可.【详解】解:对于①:∵抛物线开口向上,∴a>0,∵对称轴,即,说明分子分母a,b同号,故b>0,∵抛物线与y轴相交,∴c<0,故,故①正确;对于②:对称轴,∴,故②正确;对于③:抛物线与x轴的一个交点为(-3,0),其对称轴为直线x=-1,根据抛物线的对称性可知,抛物线与x轴的另一个交点为,1,0),故当自变量x=2时,对应的函数值y=,故③错误;对于④:∵x=-5时离对称轴x=-1有4个单位长度,x=时离对称轴x=-1有个单位长度,由于<4,且开口向上,故有,故④错误,故选:A.【点睛】本题考查了二次函数的图像与其系数的符号之间的关系,熟练掌握二次函数的图形性质是解决此类题的关键.二、填空题(每题4分,共24分)13、m<8【分析】对于反比例函数:当k>0时,图象在第一、三象限;当k<0时,图象在第二、四象限.【详解】由题意得,解得故答案为:【点睛】本题考查的是反比例函数的性质,本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.14、【分析】由从1到9这九个自然数中任取一个,是偶数的有4种情况,直接利用概率公式求解即可求得答案.【详解】解:这九个自然数中任取一个有9种情况,其中是偶数的有4种情况,从1到9这九个自然数中任取一个,是偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.用到的知识点为:概率所求情况数与总情况数之比.15、1【分析】先根据一元二次方程根的定义得到,则可变形为,再根据根与系数的关系得到,,然后利用整体代入的方法计算代数式的值.【详解】是方程的实数根,,,,,是方程的两实数根,,,.故答案为1.【点睛】考查了根与系数的关系:若,是一元二次方程的两根时,,.16、(7+6)【解析】过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,得到两个直角三角形和一个矩形,在Rt△AEF中利用DF的长,求得线段AF的长;在Rt△BCE中利用CE的长求得线段BE的长,然后与AF、EF相加即可求得AB的长.【详解】解:如图所示:过点C作CE⊥AB,DF⊥AB,垂足分别为:E,F,
∵坝顶部宽为2m,坝高为6m,
∴DC=EF=2m,EC=DF=6m,
∵α=30°,
∴BE=(m),
∵背水坡的坡比为1.2:1,
∴,
解得:AF=5(m),
则AB=AF+EF+BE=5+2+6=(7+6)m,
故答案为(7+6)m.【点睛】本题考查了解直角三角形的应用,解题的关键是利用锐角三角函数的概念和坡度的概念求解.17、3cm【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线性质求出,求出,求出∠EAC,根据含30°角的直角三角形的性质求解即可.【详解】∵在△ABC中,∵垂直平分,故答案为:3cm.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.18、2【分析】此题利用三角形相似证明即可,即图中路灯与影长组成的三角形和小艺与自身影长组成的三角形相似,再根据对应边成比计算即可.【详解】如图:∵PO⊥OB,AC⊥AB,∴∠O=∠CAB,∴△POB△CAB,∴,由题意知:PO=9,CA=1.5,OA=20,∴,解得:AB=2,即小艺在路灯下的影子长是2米,故答案为:2.【点睛】此题考查根据相似三角形测影长的相关知识,利用相似三角形的相关性质即可.三、解答题(共78分)19、(1)∠B的度数为45°,AB的值为3;(1)tan∠CDB的值为1.【分析】(1)作CE⊥AB于E,设CE=x,利用∠A的正切可得到AE=1x,则根据勾股定理得到AC=x,所以x=,解得x=1,于是得到CE=1,AE=1,接着利用sinB=得到∠B=45°,则BE=CE=1,最后计算AE+BE得到AB的长;(1)利用CD为中线得到BD=AB=1.5,则DE=BD-BE=0.5,然后根据正切的定义求解.【详解】(1)作CE⊥AB于E,设CE=x,在Rt△ACE中,∵tanA==,∴AE=1x,∴AC==x,∴x=,解得x=1,∴CE=1,AE=1,在Rt△BCE中,∵sinB=,∴∠B=45°,∴△BCE为等腰直角三角形,∴BE=CE=1,∴AB=AE+BE=3,答:∠B的度数为45°,AB的值为3;(1)∵CD为中线,∴BD=AB=1.5,∴DE=BD﹣BE=1.5﹣1=0.5,∴tan∠CDE===1,即tan∠CDB的值为1.【点睛】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.解决此类题目的关键是熟练应用勾股定理和锐角三角函数的定义.20、旗杆AB的高度为【分析】首先根据三角形外角的性质结合等角对等边可得BE=DE,然后在Rt△BEC中,根据三角形函数可得BC=BE•sin60,然后可得AB的长.【详解】∵∠BEC=60°,∠BDE=30°,∴∠DBE=60°﹣30°=30°,∴BE=DE=20(m),在Rt△BEC中,BC=BE•sin60°,∴AB=BC﹣AC,答:旗杆AB的高度为.【点睛】此题主要考查了解直角三角形的应用,关键是证明BE=DE,掌握三角形函数定义.21、(1)30,6;(2)①;②≤t≤.【分析】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OF=QC可求出t的值;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,证△QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QP=QH可求出t的值;同理,如图2﹣2,当⊙O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围.【详解】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,∴S△PDQ=(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=QC,即4t=(90﹣6t),解得,t=;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=QH,∴150﹣20t=30,∴t=;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=QH,∴20t﹣150=30,∴t=,综上所述,当PQ与⊙O有公共点时,t的取值范围为:≤t≤.【点睛】本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键.22、(1)y=﹣x2+4x(2)(7,)(3)当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是【分析】(1)由抛物线的顶点坐标为(4,8)可建立过于a,b的二元一次方程组,求出a,b的值即可;(2)联立两解析式,可求出交点A的坐标;(3)设小球飞行过程中离坡面距离为z,由(1)中的解析式可得到z和x的函数关系,利用函数性质解答即可.【详解】(1)∵抛物线顶点坐标为(4,8),∴,解得:,∴二次函数解析式为:y=﹣x2+4x;(2)联立两解析式可得:,解得:或,∴点A的坐标是(7,);(3)设小球离斜坡的铅垂高度为z,则z=﹣x2+4x﹣x=﹣(x﹣3.5)2+,故当小球离点O的水平距离为3.5时,小球离斜坡的铅垂高度最大,最大值是.【点睛】本题考查了二次函数的应用,解答本题的关键是仔细审题,理解坡面的高度是解题关键,注意掌握配方法求二次函数最值得应用,难度一般.23、(1);(2)【分析】(1)根据概率公式求概率即可;(2)写出小明做这3道题,所有可能出现的等可能的结果,然后根据概率公式求概率即可.【详解】解:(1)∵第一题可以写A或B,共2种结果,其中作对的可能只有1种,∴小明做对第1题的概率是1÷2=故答案为;(2)小明做这3道题,所有可能出现的结果有:,,,,,,,,共有8种,它们出现的可能性相同,所有的结果中,满足“这3道题全做对”(记为事件)的结果只有1种,∴小明这3道题全做对的概率为1÷8=.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.24、(1)m=3;(2)①;②.【分析】(1)根据二次函数的对称轴公式可得关于m的方程,解方程即可求出结果;(2)①根据抛物线的平移规律解答即可;②根据二次函数的性质以及一次函数的性质,结合图象只要满足直线与y轴的交点的纵坐标大于抛物线与y轴交点的纵坐标解答即可.【详解】解:(1)∵的对称轴为直线,∴,解得:m=3;(2)①∵函数的表达式为y=x2-2x+1,即为,∴图象向右平移2个单位得到的新的函数图象的表达式为;②∵直线y=﹣2x+2t(t>m)与x轴交于点A,与y轴交于点B,∴A(t,0),B(0,2t),∵新的函数图象G的顶点为(3,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物联网时代的网络安全技术及管理策略
- 3 桂花雨(说课稿)-2024-2025学年统编版语文五年级上册
- 2023九年级数学上册 第2章 一元二次方程2.2 一元二次方程的解法2.2.1 配方法第3课时 用配方法解二次项系数不为1的一元二次方程说课稿 (新版)湘教版
- Unit 6 Food Lesson 1(说课稿)-2024-2025学年人教精通版(2024)英语三年级上册001
- 2025房地产委托合同书范本
- 2023九年级数学上册 第二十四章 圆24.2 点和圆、直线和圆的位置关系24.2.2 直线和圆的位置关系第3课时 切线长定理说课稿(新版)新人教版001
- 2《我爱我们的祖国》说课稿-2024-2025学年统编版语文一年级上册
- Unit1 Making friends Part C Make a mind map of making friends(说课稿)-2024-2025学年人教PEP版(2024)英语三年级上册
- 2《我是什么》(说课稿)2024-2025学年二年级上册语文统编版
- 2025关于招标合同的报告
- 构建绿色低碳的城市生态系统
- 春节习俗中的传统节日服饰与装扮
- 儿童编程课件
- (完整word版)英语四级单词大全
- 武装押运操作规程完整
- 混合动力汽车构造与检修(高职新能源汽车专业)PPT完整全套教学课件
- 小学体育《运动前后的饮食卫生》课件
- 薪酬专员岗位月度KPI绩效考核表
- 技能大赛题库(空分)
- 污水处理厂设备的操作规程(完整版)
- GB/T 28419-2012风沙源区草原沙化遥感监测技术导则
评论
0/150
提交评论