版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在△ABC中,DE//BC,,S梯形BCED=8,则S△ABC是()A.13 B.12 C.10 D.92.化简的结果是()A.2 B.4 C.2 D.43.二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A.先向左平移2个单位,再先向上平移1个单位B.先向左平移2个单位,再先向下平移1个单位C.先向右平移2个单位,再先向上平移1个单位D.先向右平移2个单位,再先向下平移1个单位4.某反比例函数的图象经过点(-2,3),则此函数图象也经过()A.(2,-3) B.(-3,3) C.(2,3) D.(-4,6)5.如图是一根空心方管,它的俯视图是()A. B. C. D.6.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°7.如图,直线与反比例函数的图象相交于、两点,过、两点分别作轴的垂线,垂足分别为点、,连接、,则四边形的面积为()A.4 B.8 C.12 D.248.如图,直线AC,DF被三条平行线所截,若DE:EF=1:2,AB=2,则AC的值为()A.6 B.4 C.3 D.9.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.810.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()A.56° B.55°C.35° D.34°11.如图,点从菱形的顶点出发,沿以的速度匀速运动到点,下图是点运动时,的面积随时间变化的关系图象是()A. B.C. D.12.菱形ABCD的一条对角线长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.24二、填空题(每题4分,共24分)13.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1、弧K1K2、弧K2K3、弧K3K4、弧K4K5、弧K5K6、…的圆心依次按点A、B、C、D、E、F循环,其弧长分别为l1、l2、l3、l4、l5、l6、….当AB=1时,l3=________,l2019=_________.14.一元二次方程(x﹣5)(x﹣7)=0的解为_____.15.如图所示,在中,,垂直平分,交于点,垂足为点,,,则等于___________.16.如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°.把△ABC绕点A按顺时针方向旋转60°后得到△AB′C′,若AB=4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_____.(结果保留π).17.设m,n分别为一元二次方程x2+2x﹣2018=0的两个实数根,则m2+3m+n=______.18.若,则=___________.三、解答题(共78分)19.(8分)如图,大圆的弦AB、AC分别切小圆于点M、N.(1)求证:AB=AC;(2)若AB=8,求圆环的面积.20.(8分)如图,某科技物展览大厅有A、B两个入口,C、D、E三个出口.小昀任选一个入口进入展览大厅,参观结束后任选一个出口离开.(1)若小昀已进入展览大厅,求他选择从出口C离开的概率.(2)求小昀选择从入口A进入,从出口E离开的概率.(请用列表或画树状图求解)21.(8分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.22.(10分)等腰中,,作的外接圆⊙O.(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.①设,若,请用含与的式子表示;②当时,若,求的长;(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.23.(10分)如图,中,,,平分,交轴于点,点是轴上一点,经过点、,与轴交于点,过点作,垂足为,的延长线交轴于点,(1)求证:为的切线;(2)求的半径.24.(10分)如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.25.(12分)如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB为半径的圆与AC相切于点F,交BC于点D,交AB于点G,过D作DE⊥AC,垂足为E.(1)DE与⊙O有什么位置关系,请写出你的结论并证明;(2)若⊙O的半径长为3,AF=4,求CE的长.26.如图,是的弦,过的中点作,垂足为,过点作直线交的延长线于点,使得.(1)求证:是的切线;(2)若,,求的边上的高.(3)在(2)的条件下,求的面积.
参考答案一、选择题(每题4分,共48分)1、D【分析】由DE∥BC,可证△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方,求△ADE的面积,再加上BCED的面积即可.【详解】解:∵DE∥BC,∴△ADE∽△ABC,∴===,∴,∵S梯形BCED=8,∴∴故选:D【点睛】本题考查了相似三角形的判定与性质.关键是利用平行线得相似,利用相似三角形的面积的性质求解.2、A【解析】根据最简二次根式的定义进行化简即可.【详解】故选:A.【点睛】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键.3、B【解析】试题分析:因为函数y=x2的图象沿y轴向下平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新函数y=x2﹣1;然后再沿x轴向左平移2个单位长度,可得新函数y=(x+2)2﹣1.解:∵函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)2﹣1;故可以得到函数y=(x+2)2﹣1的图象.故选B.考点:二次函数图象与几何变换.4、A【分析】设反比例函数y=(k为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断.【详解】设反比例函数y=(k为常数,k≠0),∵反比例函数的图象经过点(-2,3),∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24,∴点(2,-3)在反比例函数y=-的图象上.故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.5、B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.【详解】如图所示:俯视图应该是故选:B.【点睛】本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.6、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.7、C【分析】根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=3,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积.【详解】解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=3,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=3,∴四边形ABCD的面积为=S△AOC+S△ODA+S△ODB+S△OBC=4×3=1.故选C.【点睛】本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数(k为常数,k≠0)图象上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.8、A【分析】根据平行线分线段成比例定理得到比例式,求出BC,计算即可.【详解】解:∵l1∥l2∥l3,∴,又∵AB=2,∴BC=4,∴AC=AB+BC=1.
故选:A.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.9、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.10、D【分析】利用直径所对的圆周角是可求得的度数,根据同弧所对的的圆周角相等可得∠C的度数.【详解】解:AB为⊙O的直径,点D为⊙O上的一个点故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.11、A【分析】运用动点函数进行分段分析,当点P在AD上和在BD上时,结合图象得出符合要求的解析式.【详解】①当点P在AD上时,此时BC是定值,BC边的高是定值,则△PBC的面积y是定值;
②当点P在BD上时,此时BC是定值,BC边的高与运动时间x成正比例的关系,则△PBC的面积y与运动时间x是一次函数,并且△PBC的面积y与运动时间x之间是减函数,y≥1.
所以只有A符合要求.
故选:A.【点睛】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键,有一定难度.12、A【分析】先利用因式分解法解方程得到x1=3,x2=4,再根据菱形的性质可确定边AB的长是4,然后计算菱形的周长.【详解】(x﹣3)(x﹣4)=0,x﹣3=0或x﹣4=0,所以x1=3,x2=4,∵菱形ABCD的一条对角线长为6,∴边AB的长是4,∴菱形ABCD的周长为1.故选A.【点睛】本题考查菱形的性质和解一元二次方程-因式分解法,解题的关键是掌握菱形的性质和解一元二次方程-因式分解法.二、填空题(每题4分,共24分)13、π673π【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2019的长.【详解】解:根据题意得:l1=,l2=,l3=,则l2019=.故答案为:π;673π.【点睛】本题考查的是弧长的计算,先用公式计算,找出规律,则可求出ln的长.14、x1=5,x2=7【分析】根据题意利用ab=0得到a=0或b=0,求出解即可.【详解】解:方程(x﹣5)(x﹣7)=0,可得x﹣5=0或x﹣7=0,解得:x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.15、3cm【分析】根据三角形内角和定理求出∠BAC,根据线段垂直平分线性质求出,求出,求出∠EAC,根据含30°角的直角三角形的性质求解即可.【详解】∵在△ABC中,∵垂直平分,故答案为:3cm.【点睛】本题考查了三角形的边长问题,掌握三角形内角和定理、线段垂直平分线的性质、含30°角的直角三角形的性质是解题的关键.16、2π.【分析】由题意根据阴影部分的面积是:扇形BAB′的面积+S△AB′C′-S△ABC-扇形CAC′的面积,分别求得:扇形BAB′的面积和S△AB′C′,S△ABC以及扇形CAC′的面积,进而分析即可求解.【详解】解:扇形BAB′的面积是:,在直角△ABC中,,.扇形CAC′的面积是:,则阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积=.故答案为:2π.【点睛】本题考查扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB′的面积+-扇形CAC′的面积是解题的关键.17、2016【解析】由题意可得,,,∵,为方程的个根,∴,,∴.18、【分析】根据题干信息,利用已知得出a=b,进而代入代数式求出答案即可.【详解】解:∵,∴a=b,∴=.故答案为:.【点睛】本题主要考查比例的性质,正确得出a=b,并利用代入代数式求值是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)S圆环=16π【解析】试题分析:(1)连结OM、ON、OA由切线长定理可得AM=AN,由垂径定理可得AM=BM,AN=NC,从而可得AB=AC.(2)由垂径定理可得AM=BM=4,由勾股定理得OA2-OM2=AM2=16,代入圆环的面积公式求解即可.(1)证明:连结OM、ON、OA∵AB、AC分别切小圆于点M、N.∴AM=AN,OM⊥AB,ON⊥AC,∴AM=BM,AN=NC,∴AB=AC(2)解:∵弦AB切与小圆⊙O相切于点M∴OM⊥AB∴AM=BM=4∴在Rt△AOM中,OA2-OM2=AM2=16∴S圆环=πOA2-πOM2=πAM2=16π20、(1);(2)【分析】(1)用列举法即可求得;(2)画树状图(见解析)得出所有可能的结果,再分析求解即可.【详解】(1)小昀选择出口离开时的所有可能有3种:C、D、E,每一种可能出现的可能性都相等,因此他选择从出口C离开的概率为:;(2)根据题意画树状图如下:由树状图可以看出,所有可能出现的结果共有6种,即(AC)、(AD)、(AE)、(BC)、(BD)、(BE),这些结果出现的可能性相等所以小昀选择从入口A进入,出口E离开(即AE)的概率为.【点睛】本题考查了用列举法求概率,列出事件所有可能的结果是解题关键.21、(1);(2)该游戏公平.【分析】(1)根据概率公式直接计算即可;
(2)画树状图得出所有等可能的情况数,找出两指针所指数字都是偶数或都是奇数的概率即可得知该游戏是否公平.【详解】解:(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=;(2)该游戏公平.理由如下:画树状图为:共有16种等可能的结果数,其中两次的数字都是奇数的结果数为1,所以小王胜的概率=;两次的数字都是偶数的结果数为1,所以小张胜的概率=,因为小王胜的概率与小张胜的概率相等,所以该游戏公平.【点睛】本题考查的知识点是游戏公平性,概率公式,树状图法,解题关键是熟练运用树状图法.22、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.【分析】(1)①连接BO、CO,利用SSS可证明△ABO≌△ACO,可得∠BAO=∠CAO=y,利用等腰三角形的性质及三角形内角和定理可用y表示出∠ABC,由圆周角定理可得∠DCB=∠DAB=x,根据即可得答案;②过点作于点,根据垂径定理可得AF的长,利用勾股定理可求出OF的长,由(1)可得,由AB⊥CD可得n=90°,即可证明y=x,根据AB⊥CD,OF⊥AC可证明△AED∽△AFO,设DE=a,根据相似三角形的性质可,由∠D=∠B,∠AED=∠CEB=90°可证明△AED∽△CEB,设,根据相似三角形的性质可得,根据线段的和差关系和勾股定理列方程组可求出a、b的值,根据△AED∽△AFO即可求出AD的值;(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,根据BC=AB可得三角形ABC是等边三角形,根据圆周角定理可得∠APM=60°,即可证明△APM是等边三角形,利用角的和差关系可得∠BAP=∠CAM,利用SAS可证明△BAP≌△CPM,可得BP=CM,即可得出PB+PC=AP,设,则,利用∠APB和∠BPE的正弦可用x表示出BD、BE的长,根据可得S与x的关系式,根据二次函数的性质即可求出S取最大值时x的值,利用∠BPA的余弦及勾股定理可求出AB的长,根据等边三角形的性质及垂径定理求出OA的长即可得答案.【详解】(1)①连接BO,CO,∵,且为公共边,∴,∴,∴,∴∵,∵,∴∴.②过点作于点,∴,∴,∵,∴,∴,∵,∴,∴△AED∽△AFO,∴=,即,设,则∵,∴△AED∽△CEB,∴,即设,则,∴解得:或,∵a>0,b>0,∴,即DE=,∵△AED∽△AFO,∴,∴AD==3=.(2)延长到,使得,过点B作BD⊥AP于D,BE⊥CP,交CP延长线于E,连接OA,作OF⊥AB于F,∵BC=AB,AB=AC,∴是等边三角形,∴,∴,∴是等边三角形,∴,∵∠BAP+∠PAC=∠CAM+∠PAC=60°,∴在△BAP和△CAM中,,∴,∴,∴设,则,∵∠APB=∠ACB=60°,∠APM=60°,∴∠BPE=60°,∴BE=PB·sin60°=,PD=PB·sin60°=,∵,∴S=PC·BE+×AP·BD=,∴当时,即PB=5时,S有最大值,∴BD==,PD=PB·cos60°=,∴AD=AP-PD=,∴AB==7,∵△ABC是等边三角形,O为△ABC的外接圆圆心,∴∠OAF=30°,AF=AB=,∴OA==.∴此时的半径是.【点睛】本题考查圆周角定理、相似三角形的判定与性质、垂径定理、等边三角形的判定与性质、求二次函数的最值及解直角三角形,综合性比较强,熟练掌握相关的性质及定理是解题关键.23、(1)证明见解析;(2)1.【分析】(1)连接CP,根据等腰三角形的性质得到∠PAC=∠PCA,由角平分线的定义得到∠PAC=∠EAC,等量代换得到∠PCA=∠EAC,推出PC∥AE,于是得到结论;(2)连接PC,根据角平分线的定义得到∠BAC=∠OAC,根据等腰三角形的性质得到∠PCA=∠PAC,等量代换得到∠BAC=∠ACP,推出PC∥AB,根据相似三角形的性质即可得到结论.【详解】(1)证明:连接,∵,∴,∵平分,∴,∴,∴,∵,∴,即是的切线.(2)连接,∵平分,∴,∵,∴,∴,∴,∴,∴,∵,,∴,,∴,∴,∴,∴的半径为1【点睛】本题考查了角平分线的定义,平行线的判定和性质,切线的判定,相似三角形的判定和性质,正确的作出辅助线是解题的关键.24、(1)y=﹣,y=﹣x+1;(2)x<﹣3或0<x<6;(3)点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,)【分析】(1)先利用三角函数求出OD,得出点A坐标,进而求出反比例函数解析式,进而求出点B坐标,将点A,B坐标代入直线解析式中,建立方程组,求解即可得出结论;(2)根据图象直接得出结论;(3)设出点E坐标,进而表示出AE,OE,再分OA=OE,OA=AE,OE=AE三种情况,建立方程求解即可得出结论.【详解】∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=,∴a=8或a=0(舍),∴P(0,8),③当OE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年低田闲置转让合同范本大全
- 2024年代理债务合同范本模板
- 全面预算管理的培训
- 中国减少含氟气体的努力和前景(英文版)
- ktv前台礼仪培训
- 2024年中国自动头白色开尾拉链市场调查研究报告
- 培训班如何自己做课件
- 信息安全法律法规
- 2024技术运维服务合同律师拟定版本
- 2024至2030年中国薄膜高频烧结机行业投资前景及策略咨询研究报告
- (高清版)JTG 2112-2021 城镇化地区公路工程技术标准
- 中国新能源汽车安全发展报告-2023-03-新能源
- PE100管施工方案水平定向钻
- 实验室试剂管理培训
- 超星尔雅学习通《中国近现代史纲要(首都师范大学)》2024章节测试答案
- 新部编版九年级语文下册《词四首》导学案
- 油库设计与管理(山东联盟)智慧树知到期末考试答案2024年
- (2024年)小学体育多媒体课件
- 小学科普教育现状调查分析
- 物资设备盘点报告(模版)
- 国家安全概论智慧树知到期末考试答案2024年
评论
0/150
提交评论