2022年江苏宿迁沭阳县联考九年级数学第一学期期末统考模拟试题含解析_第1页
2022年江苏宿迁沭阳县联考九年级数学第一学期期末统考模拟试题含解析_第2页
2022年江苏宿迁沭阳县联考九年级数学第一学期期末统考模拟试题含解析_第3页
2022年江苏宿迁沭阳县联考九年级数学第一学期期末统考模拟试题含解析_第4页
2022年江苏宿迁沭阳县联考九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列方程中,满足两个实数根的和等于3的方程是()A.2x2+6x﹣5=0 B.2x2﹣3x﹣5=0 C.2x2﹣6x+5=0 D.2x2﹣6x﹣5=02.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.53.如图,点I是△ABC的内心,∠BIC=130°,则∠BAC=()A.60° B.65° C.70° D.80°4.已知正六边形的边心距是,则正六边形的边长是()A. B. C. D.5.共享单车为市民出行带来了方便,某单车公司第一季度投放1万辆单车,计划第三季度投放单车的数量比第一季度多4400辆,设该公司第二、三季度投放单车数量的平均增长率均为,则所列方程正确的是()A. B.C. D.6.如图,在中,,,垂足为点,如果,,那么的长是()A.4 B.6 C. D.7.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1008.下列命题正确的个数有()①两边成比例且有一角对应相等的两个三角形相似;②对角线相等的四边形是矩形;③任意四边形的中点四边形是平行四边形;④两个相似多边形的面积比为2:3,则周长比为4:1.A.1个 B.2个 C.3个 D.4个9.用配方法解方程时,方程可变形为()A. B. C. D.10.图①是由五个完全相同的小正方体组成的立体图形.将图①中的一个小正方体改变位置后如图②,则三视图发生改变的是()A.主视图 B.俯视图C.左视图 D.主视图、俯视图和左视图都改变二、填空题(每小题3分,共24分)11.在双曲线的每个分支上,函数值y随自变量x的增大而增大,则实数m的取值范围是________.12.圆弧形蔬菜大棚的剖面如图,已知AB=16m,半径OA=10m,OC⊥AB,则中柱CD的高度为_________m.13.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.14.某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心顺时针方向转动,转一圈为分钟.从小刚由登舱点进入摩天轮开始计时,到第12分钟时,他乘坐的座舱到达图2中的点_________处(填,,或),此点距地面的高度为_______m.15.在上午的某一时刻身高1.7米的小刚在地面上的影长为3.4米,同时一棵树在地面上的影子长12米,则树的高度为_____米.16.二中岗十字路口南北方向的红绿灯设置为:红灯30秒,绿灯60秒,黄灯3秒,小明由南向北经过路口遇到红灯的概率为______.17.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.18.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.三、解答题(共66分)19.(10分)(8分)向阳村2010年的人均收入为12000元,2012年的人均收入为14520元,求人均收入的年平均增长率.20.(6分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?21.(6分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.22.(8分)如图,在△ABC中,∠CAB=90°,D是边BC上一点,,E为线段AD的中点,连结CE并延长交AB于点F.(1)求证:AD⊥BC.(2)若AF:BF=1:3,求证:CD:DB=1:2.23.(8分)已知抛物线的顶点在第一象限,过点作轴于点,是线段上一点(不与点、重合),过点作轴于点,并交抛物线于点.(1)求抛物线顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围;(2)若直线交轴的正半轴于点,且,求的面积的取值范围.24.(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为xm(1)设垂直于墙的一边长为ym,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.25.(10分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.26.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD

(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.

参考答案一、选择题(每小题3分,共30分)1、D【分析】利用根与系数的关系判断即可.【详解】满足两个实数根的和等于3的方程是2x2-6x-5=0,故选D.【点睛】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.2、C【解析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.3、D【分析】根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;【详解】解:∵点I是△ABC的内心,∴∠ABC=2∠IBC,∠ACB=2∠ICB,∵∠BIC=130°,∴∠IBC+∠ICB=180°﹣∠CIB=50°,∴∠ABC+∠ACB=2×50°=100°,∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.故选D.【点睛】本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.4、A【分析】如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB,然后求出正六边形的中心角,证出△OAB为等边三角形,然后利用等边三角形的性质和锐角三角函数即可求出结论.【详解】解:如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB正六边形的中心角∠AOB=360°÷6=60°∴△OAB为等边三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六边形的边长是.故选A.【点睛】此题考查的是根据正六边形的边心距求边长,掌握中心角的定义、等边三角形的判定及性质和锐角三角函数是解决此题的关键.5、B【解析】直接根据题意得出第三季度投放单车的数量为:(1+x)2=1+0.1,进而得出答案.【详解】解:设该公司第二、三季度投放单车数量的平均增长率为x,根据题意可得:(1+x)2=1.1.故选:B.【点睛】此题主要考查了根据实际问题抽象出一元二次方程,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6、C【分析】证明△ADC∽△CDB,根据相似三角形的性质求出CD、BD,根据勾股定理求出BC.【详解】∵∠ACB=90°,

∴∠ACD+∠BCD=90°,

∵CD⊥AB,

∴∠A+∠ACD=90°,

∴∠A=∠BCD,又∠ADC=∠CDB,

∴△ADC∽△CDB,

∴,,

∴,即,

解得,CD=6,

∴,

解得,BD=4,

∴BC=,

故选:C.【点睛】此题考查相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.7、A【解析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,故选A.【点睛】本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.8、A【分析】利用相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质分别判断后即可确定正确的选项.【详解】①两边成比例且夹角对应相等的两个三角形相似,故错误;

②对角线相等的平行四边形是矩形,故错误;

③任意四边形的中点四边形是平行四边形,正确;

④两个相似多边形的面积比2:3,则周长比为:,故错误,

正确的有1个,

故选A.【点睛】本题考查命题与定理,解题的关键是掌握相似三角形的判定、矩形的判定方法、平行四边形的判定方法及相似多边形的性质.9、D【详解】解:∵2x2+3=7x,∴2x2-7x=-3,∴x2-x=-,∴x2-x+=-+,∴(x-)2=.故选D.【点睛】本题考查解一元二次方程-配方法,掌握配方法的步骤进行计算是解题关键.10、A【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图对两个组合体进行判断,可得答案.【详解】解:①的主视图是第一层三个小正方形,第二层中间一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;②的主视图是第一层三个小正方形,第二层左边一个小正方形;左视图是第一层两个小正方形,第二层左边一个小正方形;俯视图是第一层中间一个小正方形,第二层三个小正方形;所以将图①中的一个小正方体改变位置后,俯视图和左视图均没有发生改变,只有主视图发生改变,故选:A.【点睛】本题考查了三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.二、填空题(每小题3分,共24分)11、m<﹣1【分析】根据在双曲线的每个分支上,函数值y随自变量x的增大而增大,可以得到m+1<0,从而可以求得m的取值范围.【详解】∵在双曲线的每个分支上,函数值y随自变量x的增大而增大,∴m+1<0,解得,m<﹣1,故答案为m<﹣1.【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数的性质,解题的关键是明确题意,利用反比例函数的性质解答.12、4【分析】根据垂径定理可得AD=AB,然后由勾股定理可得OD的长,继而可得CD的高求解.【详解】解:∵CD垂直平分AB,∴AD=1.∴OD==6m,∴CD=OC−OD=10−6=4(m).故答案是:4【点睛】本题考查垂径定理和勾股定理的实际应用,掌握这些知识点是解题关键.13、20【解析】当AE⊥BC时,四边形AEFD的周长最小,利用直角三角形的性质解答即可.【详解】当AE⊥BC时,四边形AEFD的周长最小,∵AE⊥BC,AB=2,∠B=60°,∴AE=3,BE=,∵△ABE沿BC方向平移到△DCF的位置,∴EF=BC=AD=7,∴四边形AEFD周长的最小值为:14+6=20,故答案为:20.【点睛】本题考查平移的性质,解题的关键是确定出当AE⊥BC时,四边形AEFD的周长最小.14、C78【分析】根据转一圈需要18分钟,到第12分钟时转了圈,即可确定出座舱到达了哪个位置;再利用垂径定理和特殊角的锐角三角函数求点离地面的高度即可.【详解】∵转一圈需要18分钟,到第12分钟时转了圈∴乘坐的座舱到达图2中的点C处如图,连接BC,OC,OB,作OQ⊥BC于点E由图2可知圆的半径为44m,即∵OQ⊥BC∴∴∴∴点C距地面的高度为m故答案为C,78【点睛】本题主要考查解直角三角形,掌握垂径定理及特殊角的锐角三角函数是解题的关键.15、1【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.利用相似比和投影知识解题,【详解】∵,∴,即∴树高为1m故答案为:1.【点睛】利用相似比和投影知识解题,在某一时刻,实际高度和影长之比是一定的,此题就用到了这一知识点.16、【解析】∵该路口红灯30秒,绿灯60秒,黄灯3秒,∴爸爸随机地由南往北开车经过该路口时遇到红灯的概率是,故答案为:.17、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【点睛】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.18、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.三、解答题(共66分)19、10%.【解析】试题分析:设这两年的平均增长率为x,根据等量关系“2010年的人均收入×(1+平均增长率)2=2012年人均收入”列方程即可.试题解析:设这两年的平均增长率为x,由题意得:12000(1+x)2=14520,解得:x答:这两年的平均增长率为10%.考点:1.一元二次方程的应用;2.增长率问题.20、(1);(2)当时,w有最大值,最大值为750元【分析】(1)直接利用“总利润=每件的利润×销量”得出函数关系式;

(2)由(1)中的函数解析式,将其配方成顶点式,结合x的取值范围,利用二次函数的性质解答即可.【详解】(1)依题意得:(2)∵∴当,w随x的增大而减小∴当时,w有最大值,最大值为:元.【点睛】本题主要考查了二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数关系式及熟练掌握二次函数的性质.21、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G,∵点是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的边长为2,

当时,,∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,∴点的坐标是(-1,2),此时;

当直线与只有一个交点时,,消去y得到,由,可得,

解得:,同理,此时点M的坐标为:(),∴,

根据图象可知:当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.【点睛】本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.22、(1)见解析;(2)见解析.【分析】(1)由等积式转化为比例式,再由相似三角形的判定定理,证明△ABD∽CBA,从而得出∠ADB=∠CAB=90°;(2)过点D作DG∥AB交CF于点G,由E为AD的中点,可得△DGE≌△AFE,得出AF=DG,再由平行线分线段成比例可得出结果.【详解】证明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)过点D作DG∥AB交CF于点G,∵E为AD的中点,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=1:3,∴CD:DB=1:2.【点睛】本题考查相似三角形的判定与性质,遇到比例式或等积式就要考虑转化为三角形相似来解决问题.23、(1)函数解析式为y=x+4(x>0);(2)0≤S≤.【分析】(1)抛物线解析式为y=-x2+2mx-m2+m+4,设顶点的坐标为(x,y),利用抛物线顶点坐标公式得到x=m,y=m-4,然后消去m得到y与x的关系式即可.(2)如图,根据已知得出OE=4-2m,E(0,2m-4),设直线AE的解析式为y=kx+2m-4,代入A的坐标根据待定系数法求得解析式,然后联立方程求得交点P的坐标,根据三角形面积公式表示出S=(4-2m)(m-2)=-m2+3m-2=-(m-)2+,即可得出S的取值范围.【详解】(1)由抛物线y=-x2+2mx-m2+m+4可知,a=-1,b=2m,c=-m2+m+4,设顶点的坐标为(x,y),∴x=-=m,∵b=2m,y==m+4=x+4,即顶点的纵坐标随横坐标变化的函数解析式为y=x+4(x>0);(2)如图,由抛物线y=-x2+2mx-m2+m+4可知顶点A(m,m+4),∵轴∴轴∴△ACP∽△ABE,∴∵∴,∵AB=m,∴BE=2m,∵OB=4+m,∴OE=4+m-2m=4-m,∴E(0,4-m),设直线AE的解析式为y=kx+4-m,代入A的坐标得,m+4=km+4-m,解得k=2,∴直线AE的解析式为y=2x+4-m,解得

,,∴P(m-2,m),∴S=(4-m)(m-2)=-m2+3m-2=-(m-3)2+,∴S有最大值

,∴△OEP的面积S的取值范围:0≤S≤.【点睛】本题考查了二次函数的应用,解题的关键是正确的用字母表示出点的坐标,并利用题目的已知条件得到有关的方程或不等式,从而求得未知数的值或取值范围.24、(1)见详解;(2)x=18;(3)416m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【详解】(1)根据题意知,y==-x+;(2)根据题意,得(-x+)x=384,解得x=18或x=32.∵墙的长度为24m,∴x=18.(3)设菜园的面积是S,则S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴当x<25时,S随x的增大而增大.∵x≤24,∴当x=24时,S取得最大值,最大值为416.答:菜园的最大面积为416m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.25、(1)y=x2-4x+1;(2)点P在运动的过程中,线段PD长度的最大值为;(1)能,点P的坐标为:(1,0)或(2,-1).【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(1)分情况讨论①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可;【详解】(1)把点A(1,0)和点B(1,0)代入抛物线y=x2+bx+c,得:解得∴y=x2-4x+1.(2)把x=0代入y=x2-4x+1,得y=1.∴C(0,1).又∵A(1,0),设直线AC的解析式为:y=kx+m,把点A,C的坐标代入得:∴直线AC的解析式为:y=-x+1.PD=-x+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论