版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线y=k(x﹣1)与抛物线C:y2=4x交于A,B两点,直线y=2k(x﹣2)与抛物线D:y2=8x交于M,N两点,设λ=|AB|﹣2|MN|,则()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣122.若复数()在复平面内的对应点在直线上,则等于()A. B. C. D.3.若x,y满足约束条件则z=的取值范围为()A.[] B.[,3] C.[,2] D.[,2]4.已知双曲线C的两条渐近线的夹角为60°,则双曲线C的方程不可能为()A. B. C. D.5.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线6.已知数列为等差数列,且,则的值为()A. B. C. D.7.直线与抛物线C:交于A,B两点,直线,且l与C相切,切点为P,记的面积为S,则的最小值为A. B. C. D.8.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.3609.若(是虚数单位),则的值为()A.3 B.5 C. D.10.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)为()A. B.6 C. D.11.为计算,设计了如图所示的程序框图,则空白框中应填入()A. B. C. D.12.在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.14.展开式的第5项的系数为_____.15.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是.16.已知复数(为虚数单位),则的模为____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,直三棱柱中,分别是的中点,.(1)证明:平面;(2)求二面角的余弦值.18.(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直线过定点.19.(12分)已知数列的前项和为,.(1)求数列的通项公式;(2)若,为数列的前项和.求证:.20.(12分)设复数满足(为虚数单位),则的模为______.21.(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.①试分别计算他选择两种抽奖方案最终获得返金券的数学期望;②为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?22.(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合.以下记为的元素个数.(1)给出所有的元素均小于的好集合.(给出结论即可)(2)求出所有满足的好集合.(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】
分别联立直线与抛物线的方程,利用韦达定理,可得,,然后计算,可得结果.【题目详解】设,联立则,因为直线经过C的焦点,所以.同理可得,所以故选:D.【答案点睛】本题考查的是直线与抛物线的交点问题,运用抛物线的焦点弦求参数,属基础题。2、C【答案解析】
由题意得,可求得,再根据共轭复数的定义可得选项.【题目详解】由题意得,解得,所以,所以,故选:C.【答案点睛】本题考查复数的几何表示和共轭复数的定义,属于基础题.3、D【答案解析】
由题意作出可行域,转化目标函数为连接点和可行域内的点的直线斜率的倒数,数形结合即可得解.【题目详解】由题意作出可行域,如图,目标函数可表示连接点和可行域内的点的直线斜率的倒数,由图可知,直线的斜率最小,直线的斜率最大,由可得,由可得,所以,,所以.故选:D.【答案点睛】本题考查了非线性规划的应用,属于基础题.4、C【答案解析】
判断出已知条件中双曲线的渐近线方程,求得四个选项中双曲线的渐近线方程,由此确定选项.【题目详解】两条渐近线的夹角转化为双曲渐近线与轴的夹角时要分为两种情况.依题意,双曲渐近线与轴的夹角为30°或60°,双曲线的渐近线方程为或.A选项渐近线为,B选项渐近线为,C选项渐近线为,D选项渐近线为.所以双曲线的方程不可能为.故选:C【答案点睛】本小题主要考查双曲线的渐近线方程,属于基础题.5、C【答案解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【题目详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【答案点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.6、B【答案解析】
由等差数列的性质和已知可得,即可得到,代入由诱导公式计算可得.【题目详解】解:由等差数列的性质可得,解得,,故选:B.【答案点睛】本题考查等差数列的下标和公式的应用,涉及三角函数求值,属于基础题.7、D【答案解析】
设出坐标,联立直线方程与抛物线方程,利用弦长公式求得,再由点到直线的距离公式求得到的距离,得到的面积为,作差后利用导数求最值.【题目详解】设,,联立,得则,则由,得设,则,则点到直线的距离从而.令当时,;当时,故,即的最小值为本题正确选项:【答案点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.8、A【答案解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.9、D【答案解析】
直接利用复数的模的求法的运算法则求解即可.【题目详解】(是虚数单位)可得解得本题正确选项:【答案点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.10、D【答案解析】
根据几何体的三视图,该几何体是由正方体去掉三棱锥得到,根据正方体和三棱锥的体积公式可求解.【题目详解】如图,该几何体为正方体去掉三棱锥,所以该几何体的体积为:,故选:D【答案点睛】本题主要考查了空间几何体的三视图以及体积的求法,考查了空间想象力,属于中档题.11、A【答案解析】
根据程序框图输出的S的值即可得到空白框中应填入的内容.【题目详解】由程序框图的运行,可得:S=0,i=0满足判断框内的条件,执行循环体,a=1,S=1,i=1满足判断框内的条件,执行循环体,a=2×(﹣2),S=1+2×(﹣2),i=2满足判断框内的条件,执行循环体,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…观察规律可知:满足判断框内的条件,执行循环体,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i<1.故选:A.【答案点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满足条件时算法结束,属于基础题.12、A【答案解析】
根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【题目详解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,,即,即,,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【答案点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】
先确定关于x的方程当a为何值时有4个不相等的实根,再将这四个根的平方和表示出来,利用函数思想来判断当a为何值时这4个根的平方和存在最小值即可.【题目详解】由题意,当时,,此时,此时函数在单调递减,在单调递增,方程最多2个不相等的实根,舍;当时,函数图象如下所示:从左到右方程,有4个不相等的实根,依次为,,,,即,由图可知,故,且,,从而,令,显然,,要使该式在时有最小值,则对称轴,解得.综上所述,实数a的取值范围是.【答案点睛】本题考查了函数和方程的知识,但需要一定的逻辑思维能力,属于较难题.14、70【答案解析】
根据二项式定理的通项公式,可得结果.【题目详解】由题可知:第5项为故第5项的的系数为故答案为:70.【答案点睛】本题考查的是二项式定理,属基础题。15、【答案解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:.考点:1、三角函数定义;2、诱导公式.16、【答案解析】,所以.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【答案解析】
(1)连接交于点,由三角形中位线定理得,由此能证明平面.(2)以为坐标原点,的方向为轴正方向,的方向为轴正方向,的方向为轴正方向,建立空间直角坐标系.分别求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【题目详解】证明:证明:连接交于点,则为的中点.又是的中点,连接,则.因为平面,平面,所以平面.(2)由,可得:,即所以又因为直棱柱,所以以点为坐标原点,分别以直线为轴、轴、轴,建立空间直角坐标系,则,设平面的法向量为,则且,可解得,令,得平面的一个法向量为,同理可得平面的一个法向量为,则所以二面角的余弦值为.【答案点睛】本题主要考查直线与平面平行、二面角的概念、求法等知识,考查空间想象能力和逻辑推理能力,属于中档题.18、(1);(2)见解析【答案解析】
(1)联立直线和抛物线,消去可得,求出,,再代入弦长公式计算即可.(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.【题目详解】(1)由,消去可得,设,,则,.,解得或(舍去),.(2)证明:由(1)可得,设,所以直线的方程为,当时,,则,代入抛物线方程,可得,,所以直线的斜率,直线的方程为,整理可得,故直线过定点.【答案点睛】本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.19、(1)(2)证明见解析【答案解析】
(1)利用求得数列的通项公式.(2)先将缩小即,由此结合裂项求和法、放缩法,证得不等式成立.【题目详解】(1)∵,令,得.又,两式相减,得.∴.(2)∵.又∵,,∴.∴.∴.【答案点睛】本小题主要考查已知求,考查利用放缩法证明不等式,考查化归与转化的数学思想方法,属于中档题.20、1【答案解析】
整理已知利用复数的除法运算方式计算,再由求模公式得答案.【题目详解】因为,即所以的模为1故答案为:1【答案点睛】本题考查复数的除法运算与求模,属于基础题.21、(1)(2)①②第一种抽奖方案.【答案解析】
(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率(2)①分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可②根据①得出结论.【题目详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)①若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑安装工程承包合同
- 2024年度新能源发电EPC施工合同
- 股票课件教学课件
- 2024年城市规划地形测绘专项协议
- 2024年度旅游景区开发合同
- 2024年企业信息安全服务合同
- 2024年度CRM系统服务合同:提供销售合同管理专业支持
- 2024年亚太地区进出口合作协议
- 2024基于物联网技术的服务合同研究
- 2024年度煤炭供应合同
- 无人机概述教案
- 电线电缆电性能试验方法绝缘电阻试验电压-电流法
- 带传动设计说明书
- 从心开始-做好社区服务工作2-16ppt课件
- EXCEL总账明细账模板(带公式)
- 地下室外墙计算,挡土墙计算,裂缝计算xls
- 十二经脉穴位走向及主治病症
- 《会议摄影要点》PPT课件
- Shopping购物英语学习PPT课件
- 基于UbD理论小说叙事视角的群文阅读设计
- 内分泌系统和营养代谢性疾病总论PPT课件
评论
0/150
提交评论