

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Course#:SpringSemester,READINGREPORTFabianKock,HeinzHerwig,Localentropyproductioninturbulentshearflows:ahigh-Reynoldsnumbermodelwithwallfunctions,ArbeitsbereichTechnischeThermodynamik6-08TechnischeUniversitatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyReceived19February2003;receivedinrevisedform18November2003/在湍流层中剪切流的局部熵产:带Secondlawysisofmomentumandheattransferinunitoperations,HeinzHerwig,TammoWenterodt,InstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,Germany;Receivedinrevisedform4November2010/用热力学第二定律分析在单元操作中的动力和热量的传递Department/Institu能源科学与/先进动力/ rLocalentropyproductioninturbulentshearflows:ahigh-ReynoldsnumbermodelwithwallFabianKock,HeinzArbeitsbereichTechnischeThermodynamik(6-08),TechnischeUniversityatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyDescriptionoftheTherearefourdifferentmechanismsofentropyproduction:dissipationinameanandfluctuatingvelocityfieldandheatfluxinameanandfluctuatingtemperaturefield.EntropyproductioninpressibleturbulentshearflowsofNewtonianfluidsisysedsystematicallyandincorporatedintoaCFDcode.Computationalfluiddynamics(CFD)has estateoftheartinthermalengineeringlikeinheat-exchangerdesign.However,alltheseCFDmodelsonlytakeaccountthelawofAnefficientuseofenergyisoneofthemajorobjectivesindesigningmodernthermalsystemslikecompactheatexchangersandpowerplants.Theamountofentropyproducedcanbeuseddirectlyasanefficiencyparameterofthesystem.SecondlawandentropyproductionysisinparticularhavebeenwidelyusedtoevaluatethesourcesofirreversibilitiesincomponentsandUnfortunay,whendesigningathermalapparatusimportantinformationinherentinthesolutionoftheturbulentmomentumandenergyequationsisneverlookedatnorusedbythedesigners.However,itcouldbeusedtocalculatetheamountofentropyproductionandhelptheCFDengineertoimprovetheperformanceofhisapparatus.InthisprresentmodelequationsforthecalculationofthelocalentropyproductioninturbulentshearflowsbyextendingtheReynolds-averagingproceduretotheentropyequation.Thisequationservestoidentifytheentropyproductionsources,withoutneedtosolvetheequationitself.ThemathematicalTransportequationforForasystematicderivationofamodelforentropyproductioninturbulentflows,westartwiththetransportequationforentropy(Cartesian pressiblefluid,single-phaseflow,Fourierheatconduction),
tuxv
divT
T ModelequationsforthelocalentropyForthatpurposeinformationalreadyavailableinak–εturbulenceclosureofthewholeofequationsshouldbeusedasfaraspossible.ItTT PRO
sothatthek–εmodelmightprovidethenecessaryinformationto Q PROT
PRO,DHerekisthevarianceofthetemperaturefluctuations,k=T^2/2andisitsdissipation.Suchmodelsexist,buttheyarenotincorporatedinstandardCFD-codes.Neverthelessitisworthwhiletohaveacloserlookatthekequation. kQtuxvywzTVDTTDTPROQ ternativeapproach,suggestedbyoneoftherefereesofthisp r,couldbetolinktothedissipationrateεviakk.Then,however,anextendedturbulencemodelisThemainAsystematicprocedurehasbeenpresentedtoderiveformulationsforthelocalentropyproductionratesinturbulentflowswithheat-transfer.TheprocedureisbasedontheReynolds-averagedtransportequationforentropy.Foursourcesofentropyproductioninturbulentflowswithheattransfercanbeidentified:Entropyproductionbydirectdissipation,byturbulentdissipation,byheattransferwithmeantemperaturegradientsandbyheattransferwithgradientsofthefluctuatingtemperature.Foreachentropyproductionrateamodelequationincombinationwiththestandardk-εmodelisderived.Itturnsout,thatpeakvaluesofentropyproductionoccurveryclosetoawall.Wethereforeintroducedsemi-empiricalwall-functionsfortheentropyproductiontermsonthebasisofasymptoticconsiderations.alevaluationofthe rwithfutureIthinkthatadoptingthepresentedmodelequations,localentropyproductioncanbecalculatedinthepost-processingphaseofaCFDysis.Nofurtherdifferential-ortransportequationneedstobesolved.Thus,thepresentedproceduredoesnotrequiremuchCPUtimeandcaneasilybeimplementedinexistingCFDcodes.Itisatooltoevaluatetheperformanceofanapparatusinthermalengineering. rSecond ysisofmomentumandheattransferinunitHeinzHerwig,TammoInstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,DescriptionoftheMomentumandheattransferincomplexsystemsalwaysisthesumofsingleandsimpletransferelementsherecalledunitoperations.TheyareusuallycharacterisedbyheadlosscoefficientsandNusseltnumbersasfarastheflowandtheheattransferaspectisconcerned.Attheenergeticview,deviationsfromtheidealcyclesmaybeduetodeviationsintheprocessdesignbuttheydefiniywillbeduetotheirreversibilityofallrealprocesses.Thisficationoflossesinthewholethermodynamiccycleisdonebyintroducingefficiencyratiosandcoefficientsofperformance,whichquitegenerallyaretheratiooftwoglobaltiescharacterisingtherealandtheidealprocess.Sinceeachenergyorenergyfluxcanbedividedintotwocomplementarypartscalledexergyandanergy,amorespecificcharacterisationoftechnicalprocessescanbegivenintheseterms.Here,exergyisthe umtheoreticalworkobtainablefromtheenergyinteractingwiththeenvironmenttoequilibrium.Exergyisalsocalledavailablework.Anergy,sinceitisthecomplementarypartwithrespecttotheenergyasawhole,isjustallthatisnotexergy.IftheflowbehaviourischaracterizedbyaheadlosscoefficientKonlyandtheheattransferbyaNusseltnumberNuasthesoleassessmentparametersthesestandardsarenotfulfilled.OnthebackgroundofthisdeficiencyweysethecommonassessmentparameterswhicharetheheadlosscoefficientKandtheNusseltnumberNuandsuggesthowtheyshouldbecomplementedbyadditionalconsiderations.Insteadofgivingadetailedliteraturereviewaboutsimilarconsiderationsbasedonthesecondlawofthermodynamicswewilldiscussthemtogetherwithourownapproach.ThemathematicalMomentumandheattransferarethemostimportanttransferaspectsinthesinglecomponentsofcomplexsystemsthatrealizethermodynamiccycles.Intheseconduitcomponentstheunitoperationsofmomentumandheattransferoccur.Theycharacterisedbycertaincoefficientswhichfythe“transferquality”.TheytheheadlosscoefficientKofaconduitcomponentwhichcharacterizestheflowtheNusseltnumberNuinheattransferelementslikechannelsorpipeswhichcharacterisestheheattransferbehaviour.Bothoperationsaresubjecttolosseswhichfromathermodynamicspointofviewarelossesof paniedbyentropygeneration.Thelossofexergyoravailableworkisacommonandimportantaspectofbothunitoperations.Since,however,certainmassandheatflowratesmustbeachievedinthetransferelementsitisnotthelossitselfthatcountsbuttherelativei.e.thelossofavailableworkpertransferForflowassessment,acommonwaytoassessthe“flowbehavior”inaconduitcomponentisK u2introduceaheadlosscoefficientK.Itsgeneraldefinition (headlosswithPlossmasspecificdissipationofmechanicalenergyduetotheForheattransferassessment,Acommonwaytoassessthe“heattransferbehavior”inacomponentistointroduceaheattransfercoefficienth,ormoresystematicallyaNusseltNu=hL/k.Itsgeneraldefinition
qwT
hk(Nusseltnumber),withthewall
qwQ
andtheoperatingtemperature
T
TasthewtiesintheheattransferunitwForconvectiveheattransferassessment,part(a)ofthetablecollectstheparametersintheformoftheiroriginaldefinitionwhilepart(b)showsthelimitswithrespecttoanidealoperation,i.e.anoperationwithoutlossesofavailablework.Fromathermodynamicspointofviewthesearereversibleprocesses.ThemainThisprmainlywantstoysethecommonassessments
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医联体建设成效评估报告:医联体与医教研协同发展
- 私下配送免责协议书模板
- 自建别墅房出售合同范本
- 纸板原材料销售合同范本
- 网络教育三方就业协议书
- 游泳馆合作协议合同范本
- 自动化顾问协议合同范本
- 离婚协议孩子户口协议书
- 空地出租停车合同协议书
- 电力安装三方合同协议书
- 颈动脉狭窄支架术后护理
- 护理领域中的创造性焦虑研究进展
- 医院财务人员培训课程
- 泉眼维护施工方案
- 护理文献综述汇报
- 职业技术学院《机械制造工艺与工艺装备》课程标准 机械制造及自动化
- 2025重庆电费收费标准
- 消防接警调度(一级)理论考试题库(含答案)
- 双行星真空动力混合机使用说明书
- 《蔬菜嫁接技术》课件
- 三次元操作作业指导书范本
评论
0/150
提交评论