下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Course#:SpringSemester,READINGREPORTFabianKock,HeinzHerwig,Localentropyproductioninturbulentshearflows:ahigh-Reynoldsnumbermodelwithwallfunctions,ArbeitsbereichTechnischeThermodynamik6-08TechnischeUniversitatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyReceived19February2003;receivedinrevisedform18November2003/在湍流层中剪切流的局部熵产:带Secondlawysisofmomentumandheattransferinunitoperations,HeinzHerwig,TammoWenterodt,InstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,Germany;Receivedinrevisedform4November2010/用热力学第二定律分析在单元操作中的动力和热量的传递Department/Institu能源科学与/先进动力/ rLocalentropyproductioninturbulentshearflows:ahigh-ReynoldsnumbermodelwithwallFabianKock,HeinzArbeitsbereichTechnischeThermodynamik(6-08),TechnischeUniversityatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyDescriptionoftheTherearefourdifferentmechanismsofentropyproduction:dissipationinameanandfluctuatingvelocityfieldandheatfluxinameanandfluctuatingtemperaturefield.EntropyproductioninpressibleturbulentshearflowsofNewtonianfluidsisysedsystematicallyandincorporatedintoaCFDcode.Computationalfluiddynamics(CFD)has estateoftheartinthermalengineeringlikeinheat-exchangerdesign.However,alltheseCFDmodelsonlytakeaccountthelawofAnefficientuseofenergyisoneofthemajorobjectivesindesigningmodernthermalsystemslikecompactheatexchangersandpowerplants.Theamountofentropyproducedcanbeuseddirectlyasanefficiencyparameterofthesystem.SecondlawandentropyproductionysisinparticularhavebeenwidelyusedtoevaluatethesourcesofirreversibilitiesincomponentsandUnfortunay,whendesigningathermalapparatusimportantinformationinherentinthesolutionoftheturbulentmomentumandenergyequationsisneverlookedatnorusedbythedesigners.However,itcouldbeusedtocalculatetheamountofentropyproductionandhelptheCFDengineertoimprovetheperformanceofhisapparatus.InthisprresentmodelequationsforthecalculationofthelocalentropyproductioninturbulentshearflowsbyextendingtheReynolds-averagingproceduretotheentropyequation.Thisequationservestoidentifytheentropyproductionsources,withoutneedtosolvetheequationitself.ThemathematicalTransportequationforForasystematicderivationofamodelforentropyproductioninturbulentflows,westartwiththetransportequationforentropy(Cartesian pressiblefluid,single-phaseflow,Fourierheatconduction),
tuxv
divT
T ModelequationsforthelocalentropyForthatpurposeinformationalreadyavailableinak–εturbulenceclosureofthewholeofequationsshouldbeusedasfaraspossible.ItTT PRO
sothatthek–εmodelmightprovidethenecessaryinformationto Q PROT
PRO,DHerekisthevarianceofthetemperaturefluctuations,k=T^2/2andisitsdissipation.Suchmodelsexist,buttheyarenotincorporatedinstandardCFD-codes.Neverthelessitisworthwhiletohaveacloserlookatthekequation. kQtuxvywzTVDTTDTPROQ ternativeapproach,suggestedbyoneoftherefereesofthisp r,couldbetolinktothedissipationrateεviakk.Then,however,anextendedturbulencemodelisThemainAsystematicprocedurehasbeenpresentedtoderiveformulationsforthelocalentropyproductionratesinturbulentflowswithheat-transfer.TheprocedureisbasedontheReynolds-averagedtransportequationforentropy.Foursourcesofentropyproductioninturbulentflowswithheattransfercanbeidentified:Entropyproductionbydirectdissipation,byturbulentdissipation,byheattransferwithmeantemperaturegradientsandbyheattransferwithgradientsofthefluctuatingtemperature.Foreachentropyproductionrateamodelequationincombinationwiththestandardk-εmodelisderived.Itturnsout,thatpeakvaluesofentropyproductionoccurveryclosetoawall.Wethereforeintroducedsemi-empiricalwall-functionsfortheentropyproductiontermsonthebasisofasymptoticconsiderations.alevaluationofthe rwithfutureIthinkthatadoptingthepresentedmodelequations,localentropyproductioncanbecalculatedinthepost-processingphaseofaCFDysis.Nofurtherdifferential-ortransportequationneedstobesolved.Thus,thepresentedproceduredoesnotrequiremuchCPUtimeandcaneasilybeimplementedinexistingCFDcodes.Itisatooltoevaluatetheperformanceofanapparatusinthermalengineering. rSecond ysisofmomentumandheattransferinunitHeinzHerwig,TammoInstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,DescriptionoftheMomentumandheattransferincomplexsystemsalwaysisthesumofsingleandsimpletransferelementsherecalledunitoperations.TheyareusuallycharacterisedbyheadlosscoefficientsandNusseltnumbersasfarastheflowandtheheattransferaspectisconcerned.Attheenergeticview,deviationsfromtheidealcyclesmaybeduetodeviationsintheprocessdesignbuttheydefiniywillbeduetotheirreversibilityofallrealprocesses.Thisficationoflossesinthewholethermodynamiccycleisdonebyintroducingefficiencyratiosandcoefficientsofperformance,whichquitegenerallyaretheratiooftwoglobaltiescharacterisingtherealandtheidealprocess.Sinceeachenergyorenergyfluxcanbedividedintotwocomplementarypartscalledexergyandanergy,amorespecificcharacterisationoftechnicalprocessescanbegivenintheseterms.Here,exergyisthe umtheoreticalworkobtainablefromtheenergyinteractingwiththeenvironmenttoequilibrium.Exergyisalsocalledavailablework.Anergy,sinceitisthecomplementarypartwithrespecttotheenergyasawhole,isjustallthatisnotexergy.IftheflowbehaviourischaracterizedbyaheadlosscoefficientKonlyandtheheattransferbyaNusseltnumberNuasthesoleassessmentparametersthesestandardsarenotfulfilled.OnthebackgroundofthisdeficiencyweysethecommonassessmentparameterswhicharetheheadlosscoefficientKandtheNusseltnumberNuandsuggesthowtheyshouldbecomplementedbyadditionalconsiderations.Insteadofgivingadetailedliteraturereviewaboutsimilarconsiderationsbasedonthesecondlawofthermodynamicswewilldiscussthemtogetherwithourownapproach.ThemathematicalMomentumandheattransferarethemostimportanttransferaspectsinthesinglecomponentsofcomplexsystemsthatrealizethermodynamiccycles.Intheseconduitcomponentstheunitoperationsofmomentumandheattransferoccur.Theycharacterisedbycertaincoefficientswhichfythe“transferquality”.TheytheheadlosscoefficientKofaconduitcomponentwhichcharacterizestheflowtheNusseltnumberNuinheattransferelementslikechannelsorpipeswhichcharacterisestheheattransferbehaviour.Bothoperationsaresubjecttolosseswhichfromathermodynamicspointofviewarelossesof paniedbyentropygeneration.Thelossofexergyoravailableworkisacommonandimportantaspectofbothunitoperations.Since,however,certainmassandheatflowratesmustbeachievedinthetransferelementsitisnotthelossitselfthatcountsbuttherelativei.e.thelossofavailableworkpertransferForflowassessment,acommonwaytoassessthe“flowbehavior”inaconduitcomponentisK u2introduceaheadlosscoefficientK.Itsgeneraldefinition (headlosswithPlossmasspecificdissipationofmechanicalenergyduetotheForheattransferassessment,Acommonwaytoassessthe“heattransferbehavior”inacomponentistointroduceaheattransfercoefficienth,ormoresystematicallyaNusseltNu=hL/k.Itsgeneraldefinition
qwT
hk(Nusseltnumber),withthewall
qwQ
andtheoperatingtemperature
T
TasthewtiesintheheattransferunitwForconvectiveheattransferassessment,part(a)ofthetablecollectstheparametersintheformoftheiroriginaldefinitionwhilepart(b)showsthelimitswithrespecttoanidealoperation,i.e.anoperationwithoutlossesofavailablework.Fromathermodynamicspointofviewthesearereversibleprocesses.ThemainThisprmainlywantstoysethecommonassessments
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年山东省聊城市茌平县保安员招聘考试真题附答案解析
- 2025中级经济师《金融》考题及答案解析(考生回忆版)
- 电工(高级)资格证考试考试模拟试卷及答案详解【真题汇编】
- 2026年新疆建设职业技术学院高职单招职业适应性考试参考题库及答案详解
- 电工(高级)资格证考试能力提升B卷题库附答案详解(夺分金卷)
- 2026年曲阜远东职业技术学院高职单招职业适应性考试备考题库及答案详解
- 2026初中物理教师教学工作总结
- 2025年消防安全培训试题(答案+解析)
- 人事行政主管个人工作总结范文
- 公路养护工(高级)职业技能鉴定考试全真试题卷及答案2025
- 北京市西城区2022-2023学年高三上学期1月期末考试历史试题 附答案
- 胸痛中心出院病人随访制度
- 辽宁省沈阳市和平区2023-2024学年七年级下学期期末地理试题
- 股权投资股权投资股权投资股东协议书
- 2023年首都医科大学附属北京安贞医院专项招聘医学类人员及高层次卫技人才考试历年高频考点试题含答案黑钻版解析
- GB/T 42599-2023风能发电系统电气仿真模型验证
- 智能楼宇管理员
- GB/T 15789-2005土工布及其有关产品无负荷时垂直渗透特性的测定
- GA/T 995-2020道路交通安全违法行为视频取证设备技术规范
- 化学工程与技术学科硕士研究生培养方案
- 最新人教版七年级英语上册全册复习课件
评论
0/150
提交评论