

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Course#:SpringSemester,READINGREPORTFabianKock,HeinzHerwig,Localentropyproductioninturbulentshearflows:ahigh-Reynoldsnumbermodelwithwallfunctions,ArbeitsbereichTechnischeThermodynamik6-08TechnischeUniversitatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyReceived19February2003;receivedinrevisedform18November2003/在湍流层中剪切流的局部熵产:带Secondlawysisofmomentumandheattransferinunitoperations,HeinzHerwig,TammoWenterodt,InstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,Germany;Receivedinrevisedform4November2010/用热力学第二定律分析在单元操作中的动力和热量的传递Department/Institu能源科学与/先进动力/ rLocalentropyproductioninturbulentshearflows:ahigh-ReynoldsnumbermodelwithwallFabianKock,HeinzArbeitsbereichTechnischeThermodynamik(6-08),TechnischeUniversityatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyDescriptionoftheTherearefourdifferentmechanismsofentropyproduction:dissipationinameanandfluctuatingvelocityfieldandheatfluxinameanandfluctuatingtemperaturefield.EntropyproductioninpressibleturbulentshearflowsofNewtonianfluidsisysedsystematicallyandincorporatedintoaCFDcode.Computationalfluiddynamics(CFD)has estateoftheartinthermalengineeringlikeinheat-exchangerdesign.However,alltheseCFDmodelsonlytakeaccountthelawofAnefficientuseofenergyisoneofthemajorobjectivesindesigningmodernthermalsystemslikecompactheatexchangersandpowerplants.Theamountofentropyproducedcanbeuseddirectlyasanefficiencyparameterofthesystem.SecondlawandentropyproductionysisinparticularhavebeenwidelyusedtoevaluatethesourcesofirreversibilitiesincomponentsandUnfortunay,whendesigningathermalapparatusimportantinformationinherentinthesolutionoftheturbulentmomentumandenergyequationsisneverlookedatnorusedbythedesigners.However,itcouldbeusedtocalculatetheamountofentropyproductionandhelptheCFDengineertoimprovetheperformanceofhisapparatus.InthisprresentmodelequationsforthecalculationofthelocalentropyproductioninturbulentshearflowsbyextendingtheReynolds-averagingproceduretotheentropyequation.Thisequationservestoidentifytheentropyproductionsources,withoutneedtosolvetheequationitself.ThemathematicalTransportequationforForasystematicderivationofamodelforentropyproductioninturbulentflows,westartwiththetransportequationforentropy(Cartesian pressiblefluid,single-phaseflow,Fourierheatconduction),
tuxv
divT
T ModelequationsforthelocalentropyForthatpurposeinformationalreadyavailableinak–εturbulenceclosureofthewholeofequationsshouldbeusedasfaraspossible.ItTT PRO
sothatthek–εmodelmightprovidethenecessaryinformationto Q PROT
PRO,DHerekisthevarianceofthetemperaturefluctuations,k=T^2/2andisitsdissipation.Suchmodelsexist,buttheyarenotincorporatedinstandardCFD-codes.Neverthelessitisworthwhiletohaveacloserlookatthekequation. kQtuxvywzTVDTTDTPROQ ternativeapproach,suggestedbyoneoftherefereesofthisp r,couldbetolinktothedissipationrateεviakk.Then,however,anextendedturbulencemodelisThemainAsystematicprocedurehasbeenpresentedtoderiveformulationsforthelocalentropyproductionratesinturbulentflowswithheat-transfer.TheprocedureisbasedontheReynolds-averagedtransportequationforentropy.Foursourcesofentropyproductioninturbulentflowswithheattransfercanbeidentified:Entropyproductionbydirectdissipation,byturbulentdissipation,byheattransferwithmeantemperaturegradientsandbyheattransferwithgradientsofthefluctuatingtemperature.Foreachentropyproductionrateamodelequationincombinationwiththestandardk-εmodelisderived.Itturnsout,thatpeakvaluesofentropyproductionoccurveryclosetoawall.Wethereforeintroducedsemi-empiricalwall-functionsfortheentropyproductiontermsonthebasisofasymptoticconsiderations.alevaluationofthe rwithfutureIthinkthatadoptingthepresentedmodelequations,localentropyproductioncanbecalculatedinthepost-processingphaseofaCFDysis.Nofurtherdifferential-ortransportequationneedstobesolved.Thus,thepresentedproceduredoesnotrequiremuchCPUtimeandcaneasilybeimplementedinexistingCFDcodes.Itisatooltoevaluatetheperformanceofanapparatusinthermalengineering. rSecond ysisofmomentumandheattransferinunitHeinzHerwig,TammoInstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,DescriptionoftheMomentumandheattransferincomplexsystemsalwaysisthesumofsingleandsimpletransferelementsherecalledunitoperations.TheyareusuallycharacterisedbyheadlosscoefficientsandNusseltnumbersasfarastheflowandtheheattransferaspectisconcerned.Attheenergeticview,deviationsfromtheidealcyclesmaybeduetodeviationsintheprocessdesignbuttheydefiniywillbeduetotheirreversibilityofallrealprocesses.Thisficationoflossesinthewholethermodynamiccycleisdonebyintroducingefficiencyratiosandcoefficientsofperformance,whichquitegenerallyaretheratiooftwoglobaltiescharacterisingtherealandtheidealprocess.Sinceeachenergyorenergyfluxcanbedividedintotwocomplementarypartscalledexergyandanergy,amorespecificcharacterisationoftechnicalprocessescanbegivenintheseterms.Here,exergyisthe umtheoreticalworkobtainablefromtheenergyinteractingwiththeenvironmenttoequilibrium.Exergyisalsocalledavailablework.Anergy,sinceitisthecomplementarypartwithrespecttotheenergyasawhole,isjustallthatisnotexergy.IftheflowbehaviourischaracterizedbyaheadlosscoefficientKonlyandtheheattransferbyaNusseltnumberNuasthesoleassessmentparametersthesestandardsarenotfulfilled.OnthebackgroundofthisdeficiencyweysethecommonassessmentparameterswhicharetheheadlosscoefficientKandtheNusseltnumberNuandsuggesthowtheyshouldbecomplementedbyadditionalconsiderations.Insteadofgivingadetailedliteraturereviewaboutsimilarconsiderationsbasedonthesecondlawofthermodynamicswewilldiscussthemtogetherwithourownapproach.ThemathematicalMomentumandheattransferarethemostimportanttransferaspectsinthesinglecomponentsofcomplexsystemsthatrealizethermodynamiccycles.Intheseconduitcomponentstheunitoperationsofmomentumandheattransferoccur.Theycharacterisedbycertaincoefficientswhichfythe“transferquality”.TheytheheadlosscoefficientKofaconduitcomponentwhichcharacterizestheflowtheNusseltnumberNuinheattransferelementslikechannelsorpipeswhichcharacterisestheheattransferbehaviour.Bothoperationsaresubjecttolosseswhichfromathermodynamicspointofviewarelossesof paniedbyentropygeneration.Thelossofexergyoravailableworkisacommonandimportantaspectofbothunitoperations.Since,however,certainmassandheatflowratesmustbeachievedinthetransferelementsitisnotthelossitselfthatcountsbuttherelativei.e.thelossofavailableworkpertransferForflowassessment,acommonwaytoassessthe“flowbehavior”inaconduitcomponentisK u2introduceaheadlosscoefficientK.Itsgeneraldefinition (headlosswithPlossmasspecificdissipationofmechanicalenergyduetotheForheattransferassessment,Acommonwaytoassessthe“heattransferbehavior”inacomponentistointroduceaheattransfercoefficienth,ormoresystematicallyaNusseltNu=hL/k.Itsgeneraldefinition
qwT
hk(Nusseltnumber),withthewall
qwQ
andtheoperatingtemperature
T
TasthewtiesintheheattransferunitwForconvectiveheattransferassessment,part(a)ofthetablecollectstheparametersintheformoftheiroriginaldefinitionwhilepart(b)showsthelimitswithrespecttoanidealoperation,i.e.anoperationwithoutlossesofavailablework.Fromathermodynamicspointofviewthesearereversibleprocesses.ThemainThisprmainlywantstoysethecommonassessments
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年防宠物吸顶红外探测器项目投资价值分析报告
- 2025至2030年钻石绒面料行业深度研究报告
- 2025至2030年英制圆形焊接螺母项目投资价值分析报告
- 中国汽车热管理行业发展环境、市场运行格局及前景研究报告-智研咨询(2025版)
- 智能化标准厂房建设规划与设计方案
- 智研咨询-中国消防头盔行业市场全景调查、投资策略研究报告
- 福建事业单位考试中的问题解决模型与实际应用试题及答案
- 乡村特色产业振兴行动计划
- 推动美丽城市建设的策略与实施路径解析
- 铜产业发展新机遇与行动方案
- 自然常数e的意义与计算
- 农村土地延包确权实施方案
- 糖尿病眼部护理课件
- (课件)文题5【乡情】
- 如何培养严重精神障碍患者的社交技能和人际交往能力
- 护工病房护理培训:针对病房环境中的护理工作的专项培训课件
- 健康生活从个人卫生做起
- 中小学科普讲座《水与人类生活》公开课教案教学设计课件案例测试练习卷题
- 消化内科病房的医院感染预防与控制
- 【提高酒店服务质量的思考:以S酒店为例4700字(论文)】
- 法院保安服务投标方案
评论
0/150
提交评论