

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Course#:SpringSemester,READINGREPORTFabianKock,HeinzHerwig,Localentropyproductioninturbulentshearflows:ahigh-Reynoldsnumbermodelwithwallfunctions,ArbeitsbereichTechnischeThermodynamik6-08TechnischeUniversitatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyReceived19February2003;receivedinrevisedform18November2003/在湍流层中剪切流的局部熵产:带Secondlawysisofmomentumandheattransferinunitoperations,HeinzHerwig,TammoWenterodt,InstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,Germany;Receivedinrevisedform4November2010/用热力学第二定律分析在单元操作中的动力和热量的传递Department/Institu能源科学与/先进动力/ rLocalentropyproductioninturbulentshearflows:ahigh-ReynoldsnumbermodelwithwallFabianKock,HeinzArbeitsbereichTechnischeThermodynamik(6-08),TechnischeUniversityatHamburg-Harburg,Denickestrasse15,21073Hamburg,GermanyDescriptionoftheTherearefourdifferentmechanismsofentropyproduction:dissipationinameanandfluctuatingvelocityfieldandheatfluxinameanandfluctuatingtemperaturefield.EntropyproductioninpressibleturbulentshearflowsofNewtonianfluidsisysedsystematicallyandincorporatedintoaCFDcode.Computationalfluiddynamics(CFD)has estateoftheartinthermalengineeringlikeinheat-exchangerdesign.However,alltheseCFDmodelsonlytakeaccountthelawofAnefficientuseofenergyisoneofthemajorobjectivesindesigningmodernthermalsystemslikecompactheatexchangersandpowerplants.Theamountofentropyproducedcanbeuseddirectlyasanefficiencyparameterofthesystem.SecondlawandentropyproductionysisinparticularhavebeenwidelyusedtoevaluatethesourcesofirreversibilitiesincomponentsandUnfortunay,whendesigningathermalapparatusimportantinformationinherentinthesolutionoftheturbulentmomentumandenergyequationsisneverlookedatnorusedbythedesigners.However,itcouldbeusedtocalculatetheamountofentropyproductionandhelptheCFDengineertoimprovetheperformanceofhisapparatus.InthisprresentmodelequationsforthecalculationofthelocalentropyproductioninturbulentshearflowsbyextendingtheReynolds-averagingproceduretotheentropyequation.Thisequationservestoidentifytheentropyproductionsources,withoutneedtosolvetheequationitself.ThemathematicalTransportequationforForasystematicderivationofamodelforentropyproductioninturbulentflows,westartwiththetransportequationforentropy(Cartesian pressiblefluid,single-phaseflow,Fourierheatconduction),
tuxv
divT
T ModelequationsforthelocalentropyForthatpurposeinformationalreadyavailableinak–εturbulenceclosureofthewholeofequationsshouldbeusedasfaraspossible.ItTT PRO
sothatthek–εmodelmightprovidethenecessaryinformationto Q PROT
PRO,DHerekisthevarianceofthetemperaturefluctuations,k=T^2/2andisitsdissipation.Suchmodelsexist,buttheyarenotincorporatedinstandardCFD-codes.Neverthelessitisworthwhiletohaveacloserlookatthekequation. kQtuxvywzTVDTTDTPROQ ternativeapproach,suggestedbyoneoftherefereesofthisp r,couldbetolinktothedissipationrateεviakk.Then,however,anextendedturbulencemodelisThemainAsystematicprocedurehasbeenpresentedtoderiveformulationsforthelocalentropyproductionratesinturbulentflowswithheat-transfer.TheprocedureisbasedontheReynolds-averagedtransportequationforentropy.Foursourcesofentropyproductioninturbulentflowswithheattransfercanbeidentified:Entropyproductionbydirectdissipation,byturbulentdissipation,byheattransferwithmeantemperaturegradientsandbyheattransferwithgradientsofthefluctuatingtemperature.Foreachentropyproductionrateamodelequationincombinationwiththestandardk-εmodelisderived.Itturnsout,thatpeakvaluesofentropyproductionoccurveryclosetoawall.Wethereforeintroducedsemi-empiricalwall-functionsfortheentropyproductiontermsonthebasisofasymptoticconsiderations.alevaluationofthe rwithfutureIthinkthatadoptingthepresentedmodelequations,localentropyproductioncanbecalculatedinthepost-processingphaseofaCFDysis.Nofurtherdifferential-ortransportequationneedstobesolved.Thus,thepresentedproceduredoesnotrequiremuchCPUtimeandcaneasilybeimplementedinexistingCFDcodes.Itisatooltoevaluatetheperformanceofanapparatusinthermalengineering. rSecond ysisofmomentumandheattransferinunitHeinzHerwig,TammoInstituteofThermo-FluidDynamics,HamburgUniversityofTechnology,DescriptionoftheMomentumandheattransferincomplexsystemsalwaysisthesumofsingleandsimpletransferelementsherecalledunitoperations.TheyareusuallycharacterisedbyheadlosscoefficientsandNusseltnumbersasfarastheflowandtheheattransferaspectisconcerned.Attheenergeticview,deviationsfromtheidealcyclesmaybeduetodeviationsintheprocessdesignbuttheydefiniywillbeduetotheirreversibilityofallrealprocesses.Thisficationoflossesinthewholethermodynamiccycleisdonebyintroducingefficiencyratiosandcoefficientsofperformance,whichquitegenerallyaretheratiooftwoglobaltiescharacterisingtherealandtheidealprocess.Sinceeachenergyorenergyfluxcanbedividedintotwocomplementarypartscalledexergyandanergy,amorespecificcharacterisationoftechnicalprocessescanbegivenintheseterms.Here,exergyisthe umtheoreticalworkobtainablefromtheenergyinteractingwiththeenvironmenttoequilibrium.Exergyisalsocalledavailablework.Anergy,sinceitisthecomplementarypartwithrespecttotheenergyasawhole,isjustallthatisnotexergy.IftheflowbehaviourischaracterizedbyaheadlosscoefficientKonlyandtheheattransferbyaNusseltnumberNuasthesoleassessmentparametersthesestandardsarenotfulfilled.OnthebackgroundofthisdeficiencyweysethecommonassessmentparameterswhicharetheheadlosscoefficientKandtheNusseltnumberNuandsuggesthowtheyshouldbecomplementedbyadditionalconsiderations.Insteadofgivingadetailedliteraturereviewaboutsimilarconsiderationsbasedonthesecondlawofthermodynamicswewilldiscussthemtogetherwithourownapproach.ThemathematicalMomentumandheattransferarethemostimportanttransferaspectsinthesinglecomponentsofcomplexsystemsthatrealizethermodynamiccycles.Intheseconduitcomponentstheunitoperationsofmomentumandheattransferoccur.Theycharacterisedbycertaincoefficientswhichfythe“transferquality”.TheytheheadlosscoefficientKofaconduitcomponentwhichcharacterizestheflowtheNusseltnumberNuinheattransferelementslikechannelsorpipeswhichcharacterisestheheattransferbehaviour.Bothoperationsaresubjecttolosseswhichfromathermodynamicspointofviewarelossesof paniedbyentropygeneration.Thelossofexergyoravailableworkisacommonandimportantaspectofbothunitoperations.Since,however,certainmassandheatflowratesmustbeachievedinthetransferelementsitisnotthelossitselfthatcountsbuttherelativei.e.thelossofavailableworkpertransferForflowassessment,acommonwaytoassessthe“flowbehavior”inaconduitcomponentisK u2introduceaheadlosscoefficientK.Itsgeneraldefinition (headlosswithPlossmasspecificdissipationofmechanicalenergyduetotheForheattransferassessment,Acommonwaytoassessthe“heattransferbehavior”inacomponentistointroduceaheattransfercoefficienth,ormoresystematicallyaNusseltNu=hL/k.Itsgeneraldefinition
qwT
hk(Nusseltnumber),withthewall
qwQ
andtheoperatingtemperature
T
TasthewtiesintheheattransferunitwForconvectiveheattransferassessment,part(a)ofthetablecollectstheparametersintheformoftheiroriginaldefinitionwhilepart(b)showsthelimitswithrespecttoanidealoperation,i.e.anoperationwithoutlossesofavailablework.Fromathermodynamicspointofviewthesearereversibleprocesses.ThemainThisprmainlywantstoysethecommonassessments
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路工程爆破施工合同范文二零二五年
- 智慧解决方案的市场竞争力
- 二零二五版上海物业管理合同标准范例
- 二零二五版雇佣中介劳动合同
- 二零二五版销售兼职合同
- 景区导游服务规范
- 2025年有机废水沼气系统项目合作计划书
- 人教版三年级科学学习评估计划
- 2025年医用电子仪器设备项目建议书
- 员工行为规范培训
- JJF 2114-2024 矿用二氧化碳气体检测报警器校准规范
- 2024安全生产法律法规知识培训
- 《健康住宅评价标准》
- DB52T 046-2018 贵州省建筑岩土工程技术规范
- 三叉神经病病例分析
- GB/T 19077-2024粒度分析激光衍射法
- (完整版)减数分裂课件
- GB/T 44481-2024建筑消防设施检测技术规范
- 2024年《武器装备科研生产单位保密资格标准》内容考试试题库及答案
- 2024小学语文教学及说课课件:二年级下册《沙滩上的童话》
- 市政道路监理大纲34368
评论
0/150
提交评论