版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.关于反比例函数,下列说法不正确的是()A.函数图象分别位于第一、第三象限B.当x>0时,y随x的增大而减小C.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2D.函数图象经过点(1,2)2.如图,已知⊙O是等腰Rt△ABC的外接圆,点D是上一点,BD交AC于点E,若BC=4,AD=,则AE的长是()A.1 B.1.2 C.2 D.33.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.4.二次函数y=﹣x2+2x﹣4,当﹣1<x<2时,y的取值范围是()A.﹣7<y<﹣4 B.﹣7<y≤﹣3 C.﹣7≤y<﹣3 D.﹣4<y≤﹣35.已知正六边形的边心距是,则正六边形的边长是()A. B. C. D.6.定义A*B,B*C,C*D,D*B分别对应图形①、②、③、④:那么下列图形中,可以表示A*D,A*C的分别是()A.(1),(2) B.(2),(4) C.(2),(3) D.(1),(4)7.如图,AB⊥OB,AB=2,OB=4,把∠ABO绕点O顺时针旋转60°得∠CDO,则AB扫过的面积(图中阴影部分)为()A.2 B.2π C.π D.π8.关于x的二次函数y=x2﹣mx+5,当x≥1时,y随x的增大而增大,则实数m的取值范围是()A.m<2 B.m=2 C.m≤2 D.m≥29.已知二次函数的图象与轴有两个不同的交点,其横坐标分别为若且则()A. B. C. D.10.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有人,买鸡的钱数为,依题意可列方程组为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,抛物线与x轴交于A、B两点,与y轴交于C点,⊙B的圆心为B,半径是1,点P是直线AC上的动点,过点P作⊙B的切线,切点是Q,则切线长PQ的最小值是__.12.如图,P是等边△ABC内的一点,若将△PAC绕点A按逆时针方向旋转到△P'AB,则∠PAP'=_____.13.已知关于x的一元二次方程x2+kx﹣6=0有一个根为﹣3,则方程的另一个根为_____.14.已知圆锥的底面半径为3cm,母线长4cm,则它的侧面积为cm1.15.如图,在△ABC中,∠BAC=35°,将△ABC绕点A顺时针方向旋转50°,得到△AB′C′,则∠B′AC的度数是.16.为了估计虾塘里海虾的数目,第一次捕捞了500只虾,将这些虾一一做上标记后放回虾塘.几天后,第二次捕捞了2000只虾,发现其中有20只虾身上有标记,则可估计该虾塘里约有_____只虾.17.若将方程x2+6x=7化为(x+m)2=16,则m=______.18.已知弧长等于3,弧所在圆的半径为6,则该弧的度数是____________.三、解答题(共66分)19.(10分)四川是闻名天下的“熊猫之乡”,每年到大熊猫基地游玩的游客络绎不绝,大学生小张加入创业项目,项目帮助她在基地附近租店卖创意熊猫纪念品.已知某款熊猫纪念物成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件.(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)若每天该熊猫纪念物的销售量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余利润不低于3600元,试确定该熊猫纪念物销售单价的范围.20.(6分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C(1)求证:AE与⊙O相切于点A;(2)若AE∥BC,BC=2,AC=2,求AD的长.21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.22.(8分)已知抛物线与轴交于点和且过点.求抛物线的解析式;抛物线的顶点坐标;取什么值时,随的增大而增大;取什么值时,随增大而减小.23.(8分)如图,抛物线y=ax2+bx+6与x轴交于点A(6,0),B(﹣1,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点M为该抛物线对称轴上一点,当CM+BM最小时,求点M的坐标.(3)抛物线上是否存在点P,使△BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由.24.(8分)(1)解方程:(2)如图,是等腰直角三角形,是斜边,将绕点逆时针旋转后,能与重合,如果,那么的长等于多少?25.(10分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:类别家庭藏书m本学生人数A0≤m≤2520B26≤m≤50aC51≤m≤7550Dm≥7666根据以上信息,解答下列问题:(1)该调查的样本容量为,a=;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数.26.(10分)先化简,再求值:,其中.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据反比例函数图象上点的坐标特征对D进行判断;根据反比例函数的性质对A、B、C进行判断.【详解】A.k=2>0,则双曲线的两支分别位于第一、第三象限,所以A选项的说法正确;B.当x>0时,y随着x的增大而减小,所以B选项的说法正确;C.若x1<0,x2>0,则y2>y1,所以C选项的说法错误;D.把x=1代入得y=2,则点(1,2)在的图象上,所以D选项的说法正确.故选C.【点睛】本题考查了反比例函数的性质:反比例函数(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.2、A【解析】利用圆周角性质和等腰三角形性质,确定AB为圆的直径,利用相似三角形的判定及性质,确定△ADE和△BCE边长之间的关系,利用相似比求出线段AE的长度即可.【详解】解:∵等腰Rt△ABC,BC=4,∴AB为⊙O的直径,AC=4,AB=4,∴∠D=90°,在Rt△ABD中,AD=,AB=4,∴BD=,∵∠D=∠C,∠DAC=∠CBE,∴△ADE∽△BCE,∵AD:BC=:4=1:5,∴相似比为1:5,设AE=x,∴BE=5x,∴DE=-5x,∴CE=28-25x,∵AC=4,∴x+28-25x=4,解得:x=1.故选A.【点睛】题目考查了圆的基本性质、等腰直角三角形性质、相似三角形的判定及应用等知识点,题目考查知识点较多,是一道综合性试题,题目难易程度适中,适合课后训练.3、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.4、B【分析】先求出二次函数的对称轴,再根据二次函数的增减性求出最小值和最大值即可.【详解】解:∵y=﹣x2+2x﹣4,=﹣(x2﹣2x+4)=﹣(x﹣1)2﹣1,∴二次函数的对称轴为直线x=1,∴﹣1<x<2时,x=1取得最大值为﹣1,x=﹣1时取得最小值为﹣(﹣1)2+2×(﹣1)﹣4=﹣7,∴y的取值范围是﹣7<y≤﹣1.故选:B.【点睛】本题考查了二次函数与不等式,主要利用了二次函数的增减性和对称性,确定出对称轴从而判断出取得最大值和最小值的情况是解题的关键.5、A【分析】如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB,然后求出正六边形的中心角,证出△OAB为等边三角形,然后利用等边三角形的性质和锐角三角函数即可求出结论.【详解】解:如图所示:正六边形ABCDEF中,OM为边心距,OM=,连接OA、OB正六边形的中心角∠AOB=360°÷6=60°∴△OAB为等边三角形∴∠AOM=∠AOB=30°,OA=AB在Rt△OAM中,OA=即正六边形的边长是.故选A.【点睛】此题考查的是根据正六边形的边心距求边长,掌握中心角的定义、等边三角形的判定及性质和锐角三角函数是解决此题的关键.6、B【分析】先判断出算式中A、B、C、D表示的图形,然后再求解A*D,A*C.【详解】∵A*B,B*C,C*D,D*B分别对应图形①、②、③、④可得出A对应竖线、B对应大正方形、C对应横线,D对应小正方形∴A*D为竖线和小正方形组合,即(2)A*C为竖线和横线的组合,即(4)故选:B【点睛】本题考查归纳总结,解题关键是根据已知条件,得出A、B、C、D分别代表的图形.7、C【解析】根据勾股定理得到OA,然后根据边AB扫过的面积==解答即可得到结论.【详解】如图,连接OA、OC.∵AB⊥OB,AB=2,OB=4,∴OA==,∴边AB扫过的面积====.故选C.【点睛】本题考查了扇形的面积的计算,勾股定理,熟练掌握扇形的面积公式是解题的关键.8、C【分析】先求出二次函数的对称轴,再根据二次函数的性质解答即可.【详解】解:二次函数y=x2﹣mx+5的开口向上,对称轴是x=,∵当x≥1时,y随x的增大而增大,∴≤1,解得,m≤2,故选:C.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.9、C【分析】首先根据二次函数开口向下与轴有两个不同的交点,得出,然后再由对称轴即可判定.【详解】由已知,得二次函数开口向下,与轴有两个不同的交点,∴∵且∴其对称轴∴故答案为C.【点睛】此题主要考查二次函数图象的性质,熟练掌握,即可解题.10、D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有人,买鸡的钱数为,根据题意,得:.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.二、填空题(每小题3分,共24分)11、【分析】先根据解析式求出点A、B、C的坐标,求出直线AC的解析式,设点P的坐标,根据过点P作⊙B的切线,切点是Q得到PQ的函数关系式,求出最小值即可.【详解】令中y=0,得x1=-,x2=5,∴直线AC的解析式为,设P(x,),∵过点P作⊙B的切线,切点是Q,BQ=1∴PQ2=PB2-BQ2,=(x-5)2+()2-1,=,∵,∴PQ2有最小值,∴PQ的最小值是,故答案为:,【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ、BQ、PB之间的关系式是解题的关键.12、60°【解析】试题分析:根据旋转图形的性质可得:∠PAP′=∠BAC=60°.考点:旋转图形的性质13、1【分析】设方程的另一个根为a,根据根与系数的关系得出a+(﹣3)=﹣k,﹣3a=﹣6,求出即可.【详解】设方程的另一个根为a,则根据根与系数的关系得:a+(﹣3)=﹣k,﹣3a=﹣6,解得:a=1,故答案为1.【点睛】本题考查了根与系数的关系和一元二次方程的解,能熟记根与系数的关系的内容是解此题的关键.14、11π【解析】试题分析:圆锥的侧面积公式:圆锥的侧面积底面半径×母线.由题意得它的侧面积.考点:圆锥的侧面积点评:本题属于基础应用题,只需学生熟练掌握圆锥的侧面积公式,即可完成.15、15°【分析】先根据旋转的性质,求得∠BAB'的度数,再根据∠BAC=35°,求得∠B′AC的度数即可.【详解】∵将绕点顺时针方向旋转50°得到,∴,又∵,∴,故答案为:15°.【点睛】本题主要考查了旋转的性质,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.16、1.【分析】设该虾塘里约有x只虾,根据题意列出方程,解之可得答案.【详解】解:设此鱼塘内约有鱼x条,根据题意,得:=,解得:x=1,经检验:x=1是原分式方程的解,∴该虾塘里约有1只虾,故答案为:1.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.17、3【详解】在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,∴(x+3)2=16∴m=3.18、90°【分析】把弧长公式l=进行变形,把已知数据代入计算即可得到答案.【详解】解:∵l=,∴n===90°.
故答案为:90°.【点睛】本题考查的是弧长的计算,正确掌握弧长的计算公式及其变形是解题的关键.三、解答题(共66分)19、(1)为y=﹣10x+2;(2)3元时每天获取的利润最大利润是4元;(3)45≤x≤1.【分析】(1)根据每上涨1元,销量下降10件即可求解;(2)根据每天获得利润等于单件利润乘以销售量列出二次函数,再根据二次函数的性质即可求解;(3)根据每天剩余利润不低于3600元和二次函数图象即可求解.【详解】解:(1)根据题意,得y=250﹣10(x﹣45)=﹣10x+2.答:每天的销售量y(件)与销售单价x(元)之间的函数关系式为y=﹣10x+2.(2)销售量不低于240件,得﹣10x+2≥240解得x≤3,∴30<x≤3.设销售单价为x元时,每天获取的利润是w元,根据题意,得w=(x﹣30)(﹣10x+2)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000∵﹣10<0,所以x<50时,w随x的增大而增大,所以当x=3时,w有最大值,w的最大值为﹣10(3﹣50)2+4000=4.答:销售单价为3元时,每天获取的利润最大,最大利润是4元.(3)根据题意,得w﹣150=﹣10x2+1000x﹣21000﹣150=3600即﹣10(x﹣50)2=﹣250解得x1=1,x2=45,根据图象得,当45≤x≤1时,捐款后每天剩余利润不低于3600元.【点睛】本题考查了二次函数的应用,利用二次函数的性质求最大值,正确求出二次函数关系式,理解二次函数的性质是解题的关键.20、(1)证明见解析;(2)AD=2.【解析】(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.【详解】(1)如图,连接OA,交BC于F,则OA=OB,∴∠D=∠DAO,∵∠D=∠C,∴∠C=∠DAO,∵∠BAE=∠C,∴∠BAE=∠DAO,∵BD是⊙O的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE⊥OA,∴AE与⊙O相切于点A;(2)∵AE∥BC,AE⊥OA,∴OA⊥BC,∴,FB=BC,∴AB=AC,∵BC=2,AC=2,∴BF=,AB=2,在Rt△ABF中,AF==1,在Rt△OFB中,OB2=BF2+(OB﹣AF)2,∴OB=4,∴BD=8,∴在Rt△ABD中,AD=.【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.21、(1);(2)【分析】(1)利用概率公式直接计算即可;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22、(1);(1);(3)当时,随增大而增大;当时,随增大而减小.【分析】(1)设二次函数解析式为y=a(x﹣1)(x﹣1),然后把点(3,4)代入函数解析式求得a的值即可;(1)将(1)中抛物线的解析式利用配方法转化为顶点式,可以直接写出顶点坐标;(3)根据抛物线的开口方向和对称轴写出答案.【详解】(1)∵二次函数y=ax1+bx+c的图象与x轴交于点(1,0)和(1,0),∴设该二次函数解析式为y=a(x﹣1)(x﹣1)(a≠0),把点(3,4)代入,得:a×(3﹣1)×(3﹣1)=4,解得:a=1.则该抛物线的解析式为:y=1(x﹣1)(x﹣1);(1)由(1)知,抛物线的解析式为y=1(x﹣1)(x﹣1).∵y=1(x﹣1)(x﹣1)=1(x)1,∴该抛物线的顶点坐标是:(,).(3)由抛物线的解析式y=1(x)1知,抛物线开口方向向上,对称轴是x.结合二次函数y=ax1+bx+c的图象与x轴交于点(1,0)和(1,0),作出该抛物线的大致图象.如图所示,当x时,y随x的增大而增大;当x时,y随x的增大而减小.【点睛】本题考查了抛物线与x轴的交点.解题时,需要熟悉抛物线解析式的三种形式,并且掌握抛物线的性质.23、(1)y=﹣x2+5x+6;(2)M(,);(3)存在5个满足条件的P点,尺规作图见解析【分析】(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6即可;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,则CM+BM=C'M+BM=BC最小;求出BC'的直线解析式为y=x+1,即可求M点;(3)根据等腰三角形腰的情况分类讨论,然后分别尺规作图即可.【详解】解:(1)将A(6,0),B(﹣1,0)代入y=ax2+bx+6,可得a=﹣1,b=5,∴y=﹣x2+5x+6;(2)作点C关于对称轴x=的对称点C',连接BC'与对称轴交于点M,根据两点之间线段最短,则CM+BM=C'M+BM=C'B最小,∵C(0,6),∴C'(5,6),设直线BC'的解析式为y=kx+b将B(﹣1,0)和C'(5,6)代入解析式,得解得:∴直线BC'的解析式为y=x+1,将x=代入,解得y=∴M(,);(3)存在5个满足条件的P点;尺规作图如下:①若CB=CP时,以C为原点,BC的长为半径作圆,交抛物线与点P,如图1所示,此时点P有两种情况;②若BC=BP时,以B为原点,BC的长为半径作圆,交抛物线与点P,如图2所示,此时点P即为所求;③若BP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省临川一中南昌二中九江一中新余一中等九校重点中学2025届高考英语考前最后一卷预测卷含解析
- 江苏省常州中学2025届高三最后一卷英语试卷含解析
- 2025届江西省鹰潭一中高三下学期第六次检测数学试卷含解析
- 2025届黑龙江省牡丹江市爱民区第一高级中学高三第六次模拟考试数学试卷含解析
- 山西省吕梁市孝义市2025届高考压轴卷英语试卷含解析
- 江苏省2025届高考英语五模试卷含解析
- 黑龙江省齐齐哈尔市第十一中学2025届高三下学期第六次检测英语试卷含解析
- 辽宁省辽师大附中2025届高考语文五模试卷含解析
- 2025届甘肃省兰州市联片办学高三下学期第六次检测英语试卷含解析
- 江苏省南大附中2025届高三3月份模拟考试数学试题含解析
- 急诊科临床诊疗常规技术操作规范
- 维修电工日巡检、修维记录表
- 菌糠的利用课件
- 华北理工大学中药学教案(64学时-田春雨)
- 四年级上册数学课件 -9.1 平均数 ︳青岛版(五四学制)(共21张PPT)
- 药品生产质量管理规范(2010版)(含13个附录)
- 小学数学苏教版六年级上册《长方体和正方体整理与复习》教案(公开课)
- DB11T 1411-2017 节能监测服务平台建设规范
- 《快乐的罗嗦》教学反思
- 国际金属材料对照表
- (完整版)非煤矿山开发流程图
评论
0/150
提交评论