![2023学年江西省吉安市吉水县第二中学高考考前提分数学仿真卷(含解析)_第1页](http://file4.renrendoc.com/view/12a776396c5c37d4a89d398211250d5e/12a776396c5c37d4a89d398211250d5e1.gif)
![2023学年江西省吉安市吉水县第二中学高考考前提分数学仿真卷(含解析)_第2页](http://file4.renrendoc.com/view/12a776396c5c37d4a89d398211250d5e/12a776396c5c37d4a89d398211250d5e2.gif)
![2023学年江西省吉安市吉水县第二中学高考考前提分数学仿真卷(含解析)_第3页](http://file4.renrendoc.com/view/12a776396c5c37d4a89d398211250d5e/12a776396c5c37d4a89d398211250d5e3.gif)
![2023学年江西省吉安市吉水县第二中学高考考前提分数学仿真卷(含解析)_第4页](http://file4.renrendoc.com/view/12a776396c5c37d4a89d398211250d5e/12a776396c5c37d4a89d398211250d5e4.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年高考数学模拟测试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方形的边长为,是正方形内部(不包括正方形的边)一点,且,则的最小值为()A. B. C. D.2.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为()A. B. C. D.3.如图,在四边形中,,,,,,则的长度为()A. B.C. D.4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为()A. B. C. D.5.已知等比数列的前项和为,若,且公比为2,则与的关系正确的是()A. B.C. D.6.设为自然对数的底数,函数,若,则()A. B. C. D.7.下列函数中,既是奇函数,又是上的单调函数的是()A. B.C. D.8.设,满足约束条件,若的最大值为,则的展开式中项的系数为()A.60 B.80 C.90 D.1209.某四棱锥的三视图如图所示,该几何体的体积是()A.8 B. C.4 D.10.已知正项等比数列的前项和为,则的最小值为()A. B. C. D.11.函数的定义域为()A. B. C. D.12.高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为()A.40 B.60 C.80 D.100二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。14.若实数,满足不等式组,则的最小值为______.15.在面积为的中,,若点是的中点,点满足,则的最大值是______.16.五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成______种不同的音序.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在三棱柱中,,,,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.18.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.19.(12分)已知等差数列中,,数列的前项和.(1)求;(2)若,求的前项和.20.(12分)已知函数,其中,.(1)当时,求的值;(2)当的最小正周期为时,求在上的值域.21.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.22.(10分)已知椭圆的左、右顶点分别为、,上、下顶点分别为,,为其右焦点,,且该椭圆的离心率为;(Ⅰ)求椭圆的标准方程;(Ⅱ)过点作斜率为的直线交椭圆于轴上方的点,交直线于点,直线与椭圆的另一个交点为,直线与直线交于点.若,求取值范围.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】
分别以直线为轴,直线为轴建立平面直角坐标系,设,根据,可求,而,化简求解.【题目详解】解:建立以为原点,以直线为轴,直线为轴的平面直角坐标系.设,,,则,,由,即,得.所以=,所以当时,的最小值为.故选:C.【答案点睛】本题考查向量的数量积的坐标表示,属于基础题.2、D【答案解析】
利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【题目详解】《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,这5部专著中有3部产生于汉、魏、晋、南北朝时期.记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期.从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为.故选D.【答案点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,….,再,…..依次….…这样才能避免多写、漏写现象的发生.3、D【答案解析】
设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【题目详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D【答案点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.4、C【答案解析】
先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【题目详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【答案点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.5、C【答案解析】
在等比数列中,由即可表示之间的关系.【题目详解】由题可知,等比数列中,且公比为2,故故选:C【答案点睛】本题考查等比数列求和公式的应用,属于基础题.6、D【答案解析】
利用与的关系,求得的值.【题目详解】依题意,所以故选:D【答案点睛】本小题主要考查函数值的计算,属于基础题.7、C【答案解析】
对选项逐个验证即得答案.【题目详解】对于,,是偶函数,故选项错误;对于,,定义域为,在上不是单调函数,故选项错误;对于,当时,;当时,;又时,.综上,对,都有,是奇函数.又时,是开口向上的抛物线,对称轴,在上单调递增,是奇函数,在上是单调递增函数,故选项正确;对于,在上单调递增,在上单调递增,但,在上不是单调函数,故选项错误.故选:.【答案点睛】本题考查函数的基本性质,属于基础题.8、B【答案解析】
画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【题目详解】如图所示:画出可行域和目标函数,,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【答案点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.9、D【答案解析】
根据三视图知,该几何体是一条垂直于底面的侧棱为2的四棱锥,画出图形,结合图形求出底面积代入体积公式求它的体积.【题目详解】根据三视图知,该几何体是侧棱底面的四棱锥,如图所示:结合图中数据知,该四棱锥底面为对角线为2的正方形,高为PA=2,∴四棱锥的体积为.故选:D.【答案点睛】本题考查由三视图求几何体体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.属于中等题.10、D【答案解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.【题目详解】设等比数列的公比为,则,由题意得,,得,解得,得.当时,;当时,,则的最小值为.故选:D.【答案点睛】本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.11、C【答案解析】
函数的定义域应满足故选C.12、D【答案解析】
由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【题目详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【答案点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.二、填空题:本题共4小题,每小题5分,共20分。13、或1【答案解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.【题目详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,,切线与的交点为,可得,解得或。【答案点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。14、5【答案解析】
根据题意,画出图像,数形结合,将目标转化为求动直线纵截距的最值,即可求解【题目详解】画出不等式组,表示的平面区域如图阴影区域所示,令,则.分析知,当,时,取得最小值,且.【答案点睛】本题考查线性规划问题,属于基础题15、【答案解析】
由任意三角形面积公式与构建关系表示|AB||AC|,再由已知与平面向量的线性运算、平面向量数量积的运算转化,最后由重要不等式求得最值.【题目详解】由△ABC的面积为得|AB||AC|sin∠BAC=,所以|AB||AC|sin∠BAC=,①又,即|AB||AC|cos∠BAC=,②由①与②的平方和得:|AB||AC|=,又点M是AB的中点,点N满足,所以,当且仅当时,取等号,即的最大值是为.故答案为:【答案点睛】本题考查平面向量中由线性运算表示未知向量,进而由重要不等式求最值,属于中档题.16、1【答案解析】
按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【题目详解】①若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;②若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;③若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1.【答案点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【答案解析】
(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【题目详解】(1)在中,,所以,即.因为,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,连接BD,则.以B为原点,以,,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,,,,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【答案点睛】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.18、(1)x2=4y.(2).【答案解析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时取“=”号,即x02=4+2,此时,p=.所以的最小值为2+1.考点:求抛物线的方程,与抛物线有关的最值问题.19、(1),;(2).【答案解析】
(1)由条件得出方程组,可求得的通项,当时,,可得,当时,,得出是以1为首项,2为公比的等比数列,可求得的通项;(2)由(1)可知,,分n为偶数和n为奇数分别求得.【题目详解】(1)由条件知,,,当时,,即,当时,,是以1为首项,2为公比的等比数列,;(2)由(1)可知,,当n为偶数时,当n为奇数时,综上,【答案点睛】本题考查等差数列和等比数列的通项的求得,以及其前n项和,注意分n为偶数和n为奇数两种情况分别求得其数列的和,属于中档题.20、(1)(2)【答案解析】
(1)根据,得到函数,然后,直接求解的值;(2)首先,化简函数,然后,结合周期公式,得到,再结合,及正弦函数的性质解答即可.【题目详解】(1)因为,所以(2)因为即因为,所以所以因为所以所以当时,.当时,(最大值)当时,在是增函数,在是减函数.的值域是.【答案点睛】本题主要考查了简单角的三角函数值的求解方法,两角和与差的正弦、余弦公式,三角函数的图象与性质等知识,考查了运算求解能力,属于中档题.21、(1)(2)证明见解析(3)证明见解析【答案解析】
(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2025年中国减速器行业市场调研分析及投资战略咨询报告
- 2025年中国互联网+服装行业发展前景预测及投资规划建议报告
- 提升复合型人才培养质量的策略
- 中国石化购油合同范本
- 2025年加油站安全管理及事故应急预案合同
- epc内部合同范例
- 个人网店店铺转让合同范本
- 2020-2025年中国无人船行业市场调研分析及投资战略咨询报告
- 劳务广告安装合同范例
- 作品著作版权合同范例
- DB37-T 3449-2019山东省金属非金属地下矿山通风技术规范
- 山西省大同市基层诊所医疗机构卫生院社区卫生服务中心村卫生所室地址信息
- 项目部、公司成本管理流程图
- CCAA 基于风险的认证合规管理-认证档案质量管理的风险控制
- 高中英语选择性必修二 Unit 1 Period 1 Reading and thinking(课件)(共38张)
- 小学生电子小报通用模板-A4电子小报15
- CAS云计算软件平台深入介绍
- 课堂教学方法与手段(课堂PPT)课件(PPT 16页)
- 固定资产投资统计培训PPT课件
- 一年级上册必背古诗
- 平顶山第四届名师名班主任名校长培养方案
评论
0/150
提交评论