下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省汕头市大坑中学高二数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中)的面积为(
) A. B. C. D.参考答案:A略2.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m1和n1,给出下列四个命题:①m1⊥n1?m⊥n;②m⊥n?m1⊥n1③m1与n1相交?m与n相交或重合④m1与n1平行?m与n平行或重合其中不正确的命题个数是()A.1 B.2 C.3 D.4参考答案:D【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系.【分析】本题考查的知识点判断命题的真假,根据空间中特定的线线关系,分析它们在平面中射影的位置关系,或是由射影的位置关系,分析原直线的位置关系,根据直线的放置特点,逐一进行判断,可以得到正确结论.【解答】解:因为一个锐角在一个平面上的投影可以为直角,反之在平面内的射影垂直的两条直线所成的角可以是锐角,故①不正确.两条垂直的直线在一个平面内的射影可以是两条平行直线,也可以是一条直线和一个点等其他情况,故②不正确.两条异面直线在同一平面上的射影可以相交,所以射影相交的两条直线可以是异面直线,故③不正确.两条异面直线在同一平面内的射影也可以平行,所以两直线的射影平行不一定有两直线平行或重合.故④不正确.故选D.3.复数(i是虚数单位),则z的共轭复数是(
)A. B. C. D.参考答案:D4.张三和李四打算期中考试完后去旅游,约定第二天8点到9点之间在某处见面,并约定先到者等候后到者20分钟或者时间到了9点整即可离去,则两人能够见面的概率是(
)A. B. C. D.参考答案:B略5.直线在轴、轴上的截距分别是和,直线的方程是,若直线到的角是,则的值为
(
)、
、
、
、和参考答案:B6.函数在区间内是增函数,则实数的取值范围是(
).A.
B.
C.
D.参考答案:B略7.已知,那么“”是“”的()A.充分而不必要条件
B.必要而不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:D略8.在中,根据下列条件解三角形,则其中有二个解的是A、
B、
C、
D、参考答案:D9.设,则方程不能表示的曲线为(
)A
椭圆 B
双曲线 C
抛物线 D
圆参考答案:C10.已知点A(,0)和P(,t)(t∈R).若曲线x=上存在点B使∠APB=60°,则t的取值范围是()A.(0,1+]
B.[0,1+] C.[﹣1﹣,1+] D.[﹣1﹣,0)∪(0,1+]参考答案:D【考点】圆方程的综合应用.【分析】曲线x=,即x2+y2=3(0≤x),如图所示的半圆,取B(0,)时,由∠APB=60°,可得kPB==,解得t,利用圆的对称性即可得出.【解答】解:曲线x=,即x2+y2=3(0≤x),如图所示的半圆,取B(0,)时,∵∠APB=60°,∴kPB==,解得t=1+,利用圆的对称性可得:,0)∪.故选:D.【点评】本题考查了圆的对称性、斜率计算公式,考查了推理能力与计算能力,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为,则
▲
.参考答案:略12.若函数在处取极值,则__________参考答案:313.给出下面的程序框图,那么其循环体执行的次数是
参考答案:
从运行到步长为,运行次数为49914.(﹣2)(x+1)5展开式中x2项的系数为.参考答案:﹣10【考点】DB:二项式系数的性质.【分析】求出(x+1)5展开式的x3与x2项的系数,由此求出(﹣2)(x+1)5展开式中x2项的系数.【解答】解:(x+1)5展开式的通项公式为Tr+1=?x5﹣r,令5﹣r=3,得r=2,∴x3的系数为;令5﹣r=2,得r=3,∴x2的系数为;∴(﹣2)(x+1)5展开式中x2项的系数为:﹣2×=10﹣2×10=﹣10.故答案为:﹣10.15.已知函数(为常数),当时,只有一个实根;当时,只有3个相异实根,现给出下列4个命题:①有一个相同的实根;②有一个相同的实根;③的任一实根大于的任一实根;④的任一实根小于的任一实根.其中真命题的序号是________.参考答案:①②④【分析】的根的问题可转化为,即和图象交点个数问题,由题意图象应为先增后减再增,极大值为4,极小值为0,再对四个命题逐个分析得到结果.【详解】由题意图象应为先增后减再增,极大值为4,极小值为0,的根的问题可转化为,即和图象交点个数问题,由图可知,正确的命题为①②④,故答案是:①②④.【点睛】该题考查的是有关函数的综合题,涉及到的知识点有函数的单调性与函数的极值问题,将方程的根转化为曲线与直线的交点问题来解决,属于中档题目.16.将极坐标方程化成直角坐标方程为
。参考答案:略17.如果△ABC内接于半径为R的圆,且,求△ABC的面积的最大值.参考答案:【分析】利用正弦定理化简得:,再利用余弦定理求得,即可求得,利用余弦定理及基本不等式即可求得,再利用三角形面积格式即可得解【详解】解:已知等式整理得:,即,利用正弦定理化简,即,∴,∵C为三角形的内角,∴,∵,∴,∴,∴,即,则,当且仅当取得等号.所以△ABC的面积的最大值为.【点睛】本题主要考查了正弦、余弦定理,基本不等式的运用以及三角形面积公式,熟练掌握定理及公式是解本题的关键,属于中档题。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(为常数)有两个不同的极值点.(1)求实数的取值范围;(2)记的两个不同的极值点分别为,若不等式恒成立,求实数的取值范围.参考答案:(1).由函数(为常数)有两个不同的极值点.即方程有两个不相等的正实根.∴,∴.(2)由(1)知,,,∴,所以恒成立.令,.∵,递增,∴,.19.已知函数.(Ⅰ)当a=1时,证明:为偶函数;(Ⅱ)若在[0,+∞)上单调递增,求实数a的取值范围;(Ⅲ)若a=1,求实数m的取值范围,使在R上恒成立.参考答案:解:(Ⅰ)当时,定义域为R关于原点对称而故为偶函数(Ⅱ)在上任取,则因为,函数为增函数,得,,而在上单调递增,得,于是必须恒成立,即对任意恒成立,(Ⅲ)由(1)、(2)知函数在上递减,在上递增,其最小值为,且,设,则,于是不等式恒成立,等价于即恒成立而,仅当,即时取最大值故
20.(本小题满分12分)已知圆C经过原点O(0,0)且与直线y=2x8相切于点P(4,0).(1)求圆C的方程;(2)已知直线l经过点(4,5),且与圆C相交于M,N两点,若|MN|=2,求出直线l的方程.参考答案:解:(1)由已知,得圆心在经过点P(4,0)且与y=2x﹣8垂直的直线上,它又在线段OP的中垂线x=2上,所以求得圆心C(2,1),半径为.所以圆C的方程为(x﹣2)2+(y﹣1)2=5.(6分)(2)①当直线l的斜率存在时,设直线l的方程为,即.因为|MN|=2,圆C的半径为,所以圆心到直线的距离d=2,解得,所以直线,②当斜率不存在时,即直线l:x=4,符合题意综上直线l为或x=4(12分)
21.(本小题8分)
如图,在直三棱柱中,AB=AC,D、E分别
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物流信息化系统建设合同范本3篇
- 2024水暖电消防承包合同范本
- 2024年餐饮业劳动协议标准版版B版
- 2024年知识产权购买协议
- 2024年砌块运输合同与施工进度跟踪服务协议3篇
- 2024年翡翠手镯代购协议书2篇
- 2024年矿山基础设施建设项目合同
- 2024水电安装工程远程监控及故障响应服务合同3篇
- 2024年福州二手住宅买卖协议5篇
- 痉挛护理工作总结
- GB/T 44890-2024行政许可工作规范
- 军工合作合同范例
- 2025年中国稀土集团总部部分岗位社会公开招聘管理单位笔试遴选500模拟题附带答案详解
- 超市柜台长期出租合同范例
- 广东省广州市2025届高三上学期12月调研测试语文试题(含答案)
- 【8物(科)期末】合肥市第四十五中学2023-2024学年八年级上学期期末物理试题
- 统编版2024-2025学年三年级语文上册期末学业质量监测试卷(含答案)
- 从0 开始运营抖⾳音号sop 文档
- Module7 Unit2 This little girl can't walk(Period 1) (教学实录) -2024-2025学年外研版(三起)英语五年级上册
- 2024年01月11190当代中国政治制度期末试题答案
- 2024-2025学年深圳市初三适应性考试模拟试卷历史试卷
评论
0/150
提交评论