2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)_第1页
2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)_第2页
2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)_第3页
2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)_第4页
2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年山西省吕梁市某学校数学高职单招测试试题(含答案)一、单选题(20题)1.实数4与16的等比中项为A.-8B.C.8

2.A.{-3}

B.{3}

C.{-3,3}D.3.已知全集U={2,4,6,8},A={2,4},B={4,8},则,等于()A.{4}B.{2,4,8}C.{6}D.{2,8}4.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}5.已知的值()A.

B.

C.

D.

6.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π7.A.5B.6C.8D.108.已知全集U=R,集合A={x|x>2},则CuA=()A.{x|x≤1}B.{x|x<1}C.{x|x<2}D.{x|x≤2}9.已知a<0,0<b<1,则下列结论正确的是()A.a>ab

B.a>ab2

C.ab<ab2

D.ab>ab2

10.已知a=(1,2),b=(x,4)且A×b=10,则|a-b|=()A.-10

B.10

C.

D.

11.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是4012.若等差数列{an}中,a1=2,a5=6,则公差d等于()A.3B.2C.1D.013.下列函数中,在其定义域内既是偶函数,又在(-∞,0)上单调递增的函数是()A.f(x)=x2

B.f(x)=2|x|

C.f(x)=log21/|x|

D.f(x)=sin2x

14.从200个零件中抽测了其中40个零件的长度,下列说法正确的是()A.总体是200个零件B.个体是每一个零件C.样本是40个零件D.总体是200个零件的长度15.若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>016.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为()A.3/4B.5/8C.1/2D.1/417.A.B.{3}

C.{1,5,6,9}

D.{1,3,5,6,9}

18.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a19.设集合,,则()A.A,B的都是有限集B.A,B的都是无限集C.A是有限集,B是无限集D.B是有限集,A是无限集20.贿圆x2/7+y2/3=1的焦距为()A.4

B.2

C.2

D.2

二、填空题(10题)21.若f(X)=,则f(2)=

。22.口袋装有大小相同的8个白球,4个红球,从中任意摸出2个,则两球颜色相同的概率是_____.23.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.24.25.集合A={1,2,3}的子集的个数是

。26.27.28.设A(2,-4),B(0,4),则线段AB的中点坐标为

。29.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.30.三、计算题(10题)31.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.32.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.35.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.36.在等差数列{an}中,前n项和为Sn,且S4=-62,S6=-75,求等差数列{an}的通项公式an.37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。38.解不等式4<|1-3x|<739.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2.40.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.四、证明题(5题)41.42.己知a=(-1,2),b=(-2,1),证明:cos〈a,b〉=4/5.43.△ABC的三边分别为a,b,c,为且,求证∠C=44.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.45.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.五、综合题(5题)46.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.47.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.48.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.49.50.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)六、解答题(5题)51.已知数列{an}是的通项公式为an=en(e为自然对数的底数);(1)证明数列{an}为等比数列;(2)若bn=Inan,求数列{1/bnbn+1}的前n项和Tn.52.已知等差数列{an}的公差为2,其前n项和Sn=pnn+2n,n∈N(1)求p的值及an;(2)在等比数列{bn}中,b3=a1,b4=a2+4,若{bn}的前n项和为Tn,求证:数列{Tn+1/6}为等比数列.53.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.54.已知数列{an}是等差数列,且a2=3,a4+a5+a6=27(1)求通项公式an(2)若bn=a2n,求数列{bn}的前n项和Tn.55.

参考答案

1.B

2.C

3.C

4.A交集

5.A

6.A

7.A

8.D补集的计算.由A={x|x>2},全集U=R,则CuA={x|x≤2}

9.C命题的真假判断与应用.由题意得ab-ab2=ab(1-b)<0,所以ab<ab2

10.D向量的线性运算.因为a×b=10,x+8==10,x=2,a-b=(-l,-2),故|a-b|=

11.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.

12.C等差数列的性质.a5=a1+4d=2+4d=6,d=1.

13.C函数的奇偶性,单调性.函数f(x)=x2是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=2|x|是偶函数,但在区间(-∞,0)上单调递减,不合题意;函数f(x)=㏒21/|x|是偶函数,且在区间(-∞,0)上单调递增,符合题意;函数f(x)=sin2x是奇函数,不合题意.

14.D总体,样本,个体,容量的概念.总体是200个零件的长度,个体是每一零件的长度,样本是40个零件的长度,样本容量是40.

15.C三角函数值的符号.由tanα>0,可得α的终边在第一象限或第三象限,此时sinα与cosα同号,故sin2α=2sinαcosα>0

16.C随机抽样的概率.分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P=1/2.故选C

17.D

18.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

19.B由于等腰三角形和(0,1)之间的实数均有无限个,因此A,B均为无限集。

20.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

21.00。将x=2代入f(x)得,f(2)=0。

22.23.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.24.5n-1025.826.(3,-4)

27.28.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。29.-3或7,30.531.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

32.

33.

34.

35.36.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

37.

38.

39.40.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

41.

42.

43.

44.∴PD//平面ACE.45.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即46.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论