




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.1.1平面[学习目标]1.了解平面的概念及表示方法.2.理解平面的公理1,公理2,公理3.3.会用符号语言准确表述几何对象的位置关系.[知识链接]1.在同一平面内,两条直线的位置关系有平行、相交、重合.2.点和直线的位置关系有点在直线上和点在直线外.[预习导引]1.平面的概念(1)几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.(2)平面的画法①水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍,如图①.②如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.(3)平面的表示法图①的平面可表示为平面α,平面ABCD,平面AC或平面BD.2.点、线、面之间的关系(1)直线在平面内的概念:如果直线l上的所有点都在平面α内,就说直线l在平面α内,或者说平面α经过直线l.(2)一些文字语言与数学符号的对应关系:文字语言表达数学符号表示文字语言表达数学符号表示点A在直线l上A∈l点A在直线l外A∉l点A在平面α内A∈α点A在平面α外A∉α直线l在平面α内l⊂α直线l在平面α外l⊄α直线l,m相交于点Al∩m=A平面α、β相交于直线lα∩β=l3.平面的基本性质及作用公理内容图形符号作用公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α既可判定直线和点是否在平面内,又能说明平面是无限延展的公理2过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的平面α使A,B,C∈α一是确定平面;二是证明点、线共面问题;三是判断两个平面重合的依据公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,且P∈β⇒α∩β=l,且P∈l一是判断两个平面相交的依据;二是证明点共线问题的依据;三是证明线共点问题的依据要点一三种语言的转换例1用符号语言表示下列语句,并画出图形.(1)三个平面α,β,γ相交于一点P,且平面α与平面β相交于PA,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2)平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.解(1)符号语言表示:α∩β∩γ=P,α∩β=PA,α∩γ=PB,β∩γ=PC,图形表示如图①.(2)符号语言表示:平面ABD∩平面BDC=BD,平面ABC∩平面ADC=AC,图形表示如图②.规律方法1.用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.2.根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.跟踪演练1根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解(1)点A在平面α内,点B不在平面α内,如图①.(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图②.(3)直线l经过平面α外一点P和平面α内一点Q,如图③.要点二点线共面问题例2证明:两两相交且不过同一点的三条直线在同一平面内.证明方法一(纳入法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.方法二(重合法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.规律方法在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.(2)重合法:即先证明一些元素在一个平面内,再证明另一些元素在另一个平面内,然后证明这两个平面重合,即证得所有元素在同一个平面内.跟踪演练2已知直线a∥b,直线l与a,b都相交,求证:过a,b,l有且只有一个平面.证明如图所示.由已知a∥b,所以过a,b有且只有一个平面α.设a∩l=A,b∩l=B,∴A∈α,B∈α,且A∈l,B∈l,∴l⊂α.即过a,b,l有且只有一个平面.要点三点共线与线共点问题例3如图,在正方体ABCDA1B1C1D1中,点M、N、E、F分别是棱CD、AB、DD1、AA1上的点,若MN与EF交于点Q,求证:D、A、Q三点共线.证明∵MN∩EF=Q,∴Q∈直线MN,Q∈直线EF,又∵M∈直线CD,N∈直线AB,CD⊂平面ABCD,AB⊂平面ABCD.∴M、N∈平面ABCD,∴MN⊂平面ABCD.∴Q∈平面ABCD.同理,可得EF⊂平面ADD1A1.∴Q∈平面ADD1A1.又∵平面ABCD∩平面ADD1A1=AD,∴Q∈直线AD,即D、A、Q三点共线.规律方法点共线与线共点的证明方法:(1)点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.(2)三线共点:证明三线共点问题可把其中一条作为分别过其余两条直线的两个平面的交线,然后再证两条直线的交点在此直线上,此外还可先将其中一条直线看作某两个平面的交线,证明该交线与另两条直线分别交于两点,再证点重合,从而得三线共点.跟踪演练3如图所示,已知四面体ABCD中,E,F分别是AB,AD的中点,G,H分别是BC,CD上的点,且eq\f(BG,GC)=eq\f(DH,HC)=2.求证:直线EG,FH,AC相交于同一点.证明∵E,F分别是AB,AD的中点,∴EF∥BD且EF=eq\f(1,2)BD.又∵eq\f(BG,GC)=eq\f(DH,HC)=2,∴GH∥BD且GH=eq\f(1,3)BD,∴EF∥GH且EF>GH,∴四边形EFHG是梯形,其两腰所在直线必相交,设两腰EG,FH的延长线相交于一点P,∵EG⊂平面ABC,FH⊂平面ACD,∴P∈平面ABC,P∈平面ACD,又∵平面ABC∩平面ACD=AC,∴P∈AC,故直线EG,FH,AC相交于同一点.1.下列命题中正确的个数是()①一个平面长4米,宽2米;②2个平面重叠在一起比一个平面厚;③一个平面的面积是25平方米;④将一个平面内的一条直线延长,它就会伸出这个平面.A.0B.1C.2D.3答案A解析几何中的平面是无限延展的,不可进行所有类型的度量,容易判断所有命题都不对.2.下列四个选项中的图形表示两个相交平面,其中画法正确的是()答案D解析画两个相交平面时,被遮住的部分用虚线表示.3.若点Q在直线b上,b在平面β内,则Q,b,β之间的关系可记作()A.Q∈b∈βB.Q∈b⊂βC.Q⊂b⊂βD.Q⊂b∈β答案B解析∵点Q(元素)在直线b(集合)上,∴Q∈b.又∵直线b(集合)在平面β(集合)内,∴b⊂β,∴Q∈b⊂β.4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.答案C解析∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.5.(1)空间任意4点,没有任何3点共线,它们最多可以确定________个平面.(2)空间5点,其中有4点共面,它们没有任何3点共线,这5个点最多可以确定________个平面.答案(1)4(2)7解析(1)可以想象三棱锥的4个顶点,它们总共确定4个平面.(2)可以想象四棱锥的5个顶点,它们总共确定7个平面.1.解决立体几何问题首先应过好三大语言关,即实现这三种语言的相互转换,正确理解集合符号所表示的几何图形的实际意义,恰当地用符号语言描述图形语言,将图形语言用文字语言描述出来,再转换为符号语言.文字语言和符号语言在转换的时候,要注意符号语言所代表的含义,作直观图时,要注意线的实虚.2.在处理点线共面、三点共线及三线共点问题时要体会三个公理的作用,体会先部分再整体的思想.一、基础达标1.已知点A,直线a,平面α,以下命题表述正确的个数是()①A∈a,a⊄α⇒A∉α;②A∈a,a∈α⇒A∈α;③A∉a,a⊂α⇒A∉α;④A∈a,a⊂α⇒A⊂α.A.0B.1C.2D.3答案A解析①不正确,如a∩α=A;②不正确,∵“a∈α”表述错误;③不正确,如图所示,A∉a,a⊂α,但A∈α;④不正确,“A⊂α”表述错误.2.在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线答案A解析A不是公理,是个常用的结论,需经过推理论证;BCD都是平面的基本性质公理.3.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合答案C解析∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β为经过A的一条直线而不是A.故α∩β=A的写法错误.4.空间四点A、B、C、D共面而不共线,那么这四点中()A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线答案B解析如图(1)(2)所示,A、C、D均不正确,只有B正确,如图(1)中A、B、D不共线.5.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.答案∈解析因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.6.平面α∩平面β=l,点M∈α,N∈α,点P∈β,且P∉l,又MN∩l=R,过M,N,P三点所确定的平面记为γ,则β∩γ=________.答案直线PR解析如图,MN⊂γ,R∈MN,∴R∈γ.又R∈l,∴R∈β.又P∈γ,P∈β,∴β∩γ=PR.7.已知△ABC在平面α外,直线AB∩α=P,直线AC∩α=R,直线BC∩α=Q,如图所示.求证:P,Q,R三点共线.证明∵直线AB∩α=P,∴P∈AB,P∈平面α.又∵AB⊂平面ABC,∴P∈平面ABC.则由公理3可知,点P在平面ABC与平面α的交线上.同理可证Q,R也在平面ABC与平面α的交线上.故P,Q,R三点共线于平面ABC与平面α的交线.二、能力提升8.如图所示,在正方体ABCDA1B1C1D1中,O为DB的中点,直线A1C交平面C1BD于点M,则下列结论错误的是()A.C1,M,O三点共线B.C1,M,O,C四点共面C.C1,O,A,M四点共面D.D1,D,O,M四点共面答案D解析在题图中,连接A1C1,AC,则AC∩BD=O,A1C∩平面C1BD=M.∴三点C1,M,O在平面C1BD与平面ACC1A1的交线上,即C1,M,O三点共线,∴选项A,B,C均正确,D不正确.9.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.答案共线解析∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=直线CD.∵l∩α=O,∴O∈α.又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.10.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.答案36解析正方体的一条棱长对应着2个“正交线面对”,12条棱长共对应着24个“正交线面对”;正方体的一条面对角线对应着1个“正交线面对”,12条面对角线对应着12个“正交线面对”,共有36个.11.如图所示,在正方体ABCDA1B1C1D1中,E为AB的中点,F为A1A的中点,求证:(1)E,F,D1,C四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,分别连接EF,A1B,D1C.∵E,F分别是AB和AA1的中点,∴EF綊eq\f(1,2)A1B.又A1D1綊B1C1綊BC,∴四边形A1D1CB为平行四边形.∴A1B∥CD1,∴EF∥CD1.∴EF与CD1确定一个平面,∴E,F,D1,C四点共面.(2)∵EF綊eq\f(1,2)CD1,∴直线D1F和CE必相交.设D1F∩CE=P,∵D1F⊂平面AA1D1D,P∈D1F,∴P∈平面AA1D1D.又CE⊂平面ABCD,P∈EC,∴P∈平面ABCD.∴P是平面ABCD与平面AA1D1D的公共点.又平面ABCD∩平面AA1D1D=AD,∴P∈AD,∴CE,D1F,DA三线共点.三、探究与创新12.如图,直角梯形ABCD中,AB∥CD,AB>CD,S是直角梯形ABCD所在平面外一点,画出平面SBD和平面SAC的交线.解很明显,点S是平面SBD和平面SAC的一个公共点,即点S在交线上.由于AB>CD,则分别延长D和BD交于点E,如图所示,∵E∈AC,AC⊂平面SAC,∴E∈平面SAC.同理,可证E∈平面SBD.∴点E在平面SBD和平面SAC的交线上,则连接SE,直线SE就是平面SBD和平面SAC的交线.13.在棱长是a的正方体ABCD-A1B1C1D1中,M,N分别是AA1、D1C1的中点,过D,M,N三点的平面与正方体的下底面相交于直线l.(1)画出交线l;(2)设l∩A1B1=P,求PB1的长;(3)求点D1到l的距离.解(1)如图,延长DM交D1A1的延长线于点Q,则点Q是平面DMN与平面A1B1C1D1的一个公共点.连接QN,则直线QN就是两平面的交线l.(2)∵M是AA1的中点,MA1∥DD1,∴A1是QD1的中点.又∵A1P∥D1N,∴A1P=eq\f(1,2)D1N.∵N是D1C1的中点,∴A1P=eq\f(1,4)D1C1=eq\f(a,4),∴PB1=A1B1-A1P=eq\f(3,4)a.(3)过点D1作D1H⊥PN于点H,则D1H的长就是点D1到l的距离.∵QD1=2A1D1=2a,D1N=eq\f(a,2),∴D1H=eq\f(D1Q·D1N,QN)=eq\f(2a·\f(a,2),\r(4a2+\f(a2,4)))=eq\f(2\r(17),17)a.即点D1到l的距离是eq\f(2\r(17),17)a.下课啦,咱们来听个小故事吧:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:“水”是万物之源主题班会现在开始。
水说:“同学们,你们知道我有多重要吗?”齐答:“知道。”
甲:如果没有水,我们人类就无法生存。
小熊说:我们动物可喜欢你了,没有水我们会死掉的。
花说:我们花草树木更喜欢和你做朋友,没有水,我们早就枯死了,就不能为美化环境做贡献了。
主持人:下面请听快板《水的用处真叫大》
竹板一敲来说话,水的用处真叫大;
洗衣服,洗碗筷,洗脸洗手又洗脚,
煮饭洗菜又沏茶,生活处处离不开它。
栽小树,种庄稼,农民伯伯把它夸;
鱼儿河马大对虾,日日夜夜不离它;
采煤发电要靠它,京城美化更要它。
主持人:同学们,听完了这个快板,你们说水的用处大不大?
甲说:看了他们的快板表演,我知道日常生活种离不了水。
乙说:看了表演后,我知道水对庄稼、植物是非常重要的。
丙说:我还知道水对美化城市起很大作用。
2.主持人:水有这么多用处,你们该怎样做呢?
(1)(生):我要节约用水,保护水源。
(2)(生):我以前把水壶剩的水随便就到掉很不对,以后我一定把喝剩下的水倒在盆里洗手用。
(3)(生):前几天,我看到了学校电视里转播的“水日谈水”的节目,很受教育,同学们看得可认真了,知道了我们北京是个缺水城市,我们再不能浪费水了。
(4)(生):我要用洗脚水冲厕所。
3.主持人:大家谈得都很好,下面谁想出题考考大家,答对了请给点掌声。
(1)(生):小明让爸爸刷车时把水龙头开小点,请回答对不对。
(2)(生):小兰告诉奶奶把洗菜水别到掉,留冲厕所用。
(3)一生跑上说:主持人请把手机借我用用好吗?我想现在就给姥姥打个电话,告诉她做饭时别把淘米水到掉了,用它冲厕所或浇花用。(电话内容略写)
(4)一生说:主持人我们想给大家表演一个小品行吗?
主持人:可以,大家欢迎!请看小品《这又不是我家的》
大概意思是:学校男厕所便池堵了,水龙头又大开,水流满地。学生甲乙丙三人分别上厕所,看见后又皱眉又骂,但都没有关水管,嘴里还念念有词,又说:“反正不是我家的。”
旁白:“那又是谁家的呢?”
主持人:看完这个小品,你们有什么想法吗?谁愿意给大家说说?
甲:刚才三个同学太自私了,公家的水也是大家的,流掉了多可惜,应该把水龙头关上。
乙:上次我去厕所看见水龙头没关就主动关上了。
主持人:我们给他鼓鼓掌,今后你们发现水龙头没关会怎样做呢?
齐:主动关好。
小记者:同学们,你们好!我想打扰一下,听说你们正在开班会,我想采访一下,行吗?
主持人:可以。
小记者:这位同学,你好!通过参加今天的班会你有什么想法,请谈谈好吗?
答:我要做节水的主人,不浪费一滴水。
小记者:请这位同学谈谈好吗?
答:今天参加班会我知道了节约每一滴水要从我们每个人做起。我想把每个厕所都贴上“节约用水”的字条,这样就可以提醒同学们节约用水了。
小记者:你们谈得很好,我的收获也很大。我还有新任务先走了,同学们再见!
水跑上来说:同学们,今天我很高兴,我“水伯伯”今天很开心,你们知道了有了我就有了生命的源泉,请你们今后一定节约用水呀!让人类和动物、植物共存,迎接美好的明天!
主持人:你们还有发言的吗?
答:有。
生:我代表人们谢谢你,水伯伯,节约用水就等于保护我们人类自己。
动物:小熊上场说:我代表动物家族谢谢你了,我们也会保护你的!
花草树木跑上场说:我们也不会忘记你的贡献!
水伯伯:(手舞足蹈地跳起了舞蹈)……同学们的笑声不断。
主持人:水伯伯,您这是干什么呢?
水伯伯:因为我太高兴了,今后还请你们多关照我呀!
主持人:水伯伯,请放心,今后我们一定会做得更好!再见!
4.主持人:大家欢迎老师讲话!
同学们,今天我们召开的班会非常生动,非常有意义。水是生命之源,无比珍贵,愿同学们能加倍珍惜它,做到节约一滴水,造福子孙后代。
5.主持人宣布:“水”是万物之源主题班会到此结束。
6.活动效果:
此次活动使学生明白了节约用水的道理,浪费水的现象减少了,宣传节约用水的人增多了,人人争做节水小标兵
活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。
活动过程:
1.主持人上场,神秘地说:“我让大家猜个谜语,你们愿意吗?”大家回答:“愿意!”
主持人口述谜语:
“双手抓不起,一刀劈不开,
煮饭和洗衣,都要请它来。”
主持人问:“谁知道这是什么?”生答:“水!”
一生戴上水的头饰上场说:“我就是同学们猜到的水。听大家说,我的用处可大了,是真的吗?”
主持人:我宣布:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桂林信息科技学院《家居纹样设计》2023-2024学年第一学期期末试卷
- 山西体育职业学院《大学生就业问》2023-2024学年第一学期期末试卷
- DB4210T 64-2024 江汉平原直播棉栽培技术规程
- 厦门工学院《中外名画欣赏》2023-2024学年第一学期期末试卷
- 江西传媒职业学院《数据结构与算法(C描述)》2023-2024学年第一学期期末试卷
- 2025至2030对外工程承包行业产业运行态势及投资规划深度研究报告
- 世界环境日绿色活动方案
- 业主桃子采摘活动方案
- 业余唱歌公司年会活动方案
- 基层文化社区活动方案
- 2025年高中历史毕业会考全部基础知识复习提纲(完整版)
- 电商平台品牌授权使用协议
- 水泥土挤密桩的施工方案
- 急性粒-单核细胞白血病病因介绍
- 心外科手术进修汇报
- 集团公司资金池管理制度
- 瑶医瑶药文化
- 设计院项目设计流程与规范
- 设备安装施工环境保护工作措施
- 西方哲学智慧2024-西方哲学智慧超星尔雅答案
- 党内法规学-形考任务一-国开(FJ)-参考资料
评论
0/150
提交评论