2023届江西省上饶市鄱阳县八年级数学第一学期期末质量检测模拟试题含解析_第1页
2023届江西省上饶市鄱阳县八年级数学第一学期期末质量检测模拟试题含解析_第2页
2023届江西省上饶市鄱阳县八年级数学第一学期期末质量检测模拟试题含解析_第3页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在食品包装、街道、宣传标语上随处可见节能、回收、绿色食品、节水的标志,在下列这些示意图标中,是轴对称图形的是()A. B. C. D.2.若分式中的变为原来的倍,则分式的值()A.变为原来的倍 B.变为原来的倍 C.变为原来的 D.不变3.已知:2m=1,2n=3,则2m+n=()A.2 B.3 C.4 D.64.如图,为了弘扬中华民族的传统文化,我校开展了全体师生学习“弟子规”活动.对此学生会就本校“弟子规学习的重要性”对1000名学生进行了调查,将得到的数据经统计后绘制成如图所示的扇形统计图,可知认为“很重要”的人数是()A.110 B.290 C.400 D.6005.下列给出的四组线段中,可以构成直角三角形的是()A.4,5,6 B. C.2,3,4 D.12,9,156.如果一个等腰三角形的两条边长分别为3和7,那么这个等腰三角形的周长为()A.13 B.17 C.13或17 D.以上都不是7.一个正多边形,它的每一个外角都等于45°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形8.2-3的倒数是()A.8 B.-8 C. D.-9.下列各因式分解中,结论正确的是()A.B.C.D.10.甲、乙两名同学的5次射击训练成绩(单位:环)如下表:甲78988乙610978比较甲、乙这5次射击成绩的方差,结果为:甲的方差()乙的方差.A.大于 B.小于 C.等于 D.无法确定11.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.12.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于点O,那么图中的等腰三角形个数()A.4 B.6 C.7 D.8二、填空题(每题4分,共24分)13.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为_______度.14.如图,的三条角平分线交于点O,O到AB的距离为3,且的周长为18,则的面积为______.15.如图,,,,若,则的长为______.16.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________17.如图,在四边形ABCD中,∠A=90°,∠D=40°,则∠B+∠C为__________.18.分解因式:a3-a=三、解答题(共78分)19.(8分)如图,在中,与的角平分线交于点,.求的度数.20.(8分)计算:;21.(8分)(1)根据所示的程序,求输出D的化简结果;(2)当x与2、3可构成等腰三角形的三边时,求D的值.22.(10分)已知△.(1)在图中用直尺和圆规作出的平分线和边的垂直平分线交于点(保留作图痕迹,不写作法).(2)在(1)的条件下,若点、分别是边和上的点,且,连接求证:;(3)如图,在(1)的条件下,点、分别是、边上的点,且△的周长等于边的长,试探究与的数量关系,并说明理由.23.(10分)某公司在甲、乙仓库共存放某种原料450吨,如果运出甲仓库所存原料的60%,乙仓库所存原料的40%,那么乙仓库剩余的原料比甲仓库剩余的原料多30吨.(1)求甲、乙两仓库各存放原料多少吨;(2)现公司需将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元吨(10≤a≤30),从乙仓库到工厂的运价不变,设从甲仓库运m吨原料到工厂,请求出总运费W关于m的函数解析式(不要求写出m的取值范围);(3)在(2)的条件下,请根据函数的性质说明:随着m的增大,W的变化情况.24.(10分)某校八年级班学生利用双休日时间去距离学校的博物馆参观.一部分学生骑自行车先走,过了后,其余学生乘汽车沿相同路线出发,结果他们同时到达,己知汽车的速度是骑车学生速度的倍,求骑车学生的速度和汽车的速度.25.(12分)_______.26.已知中,为的中点.(1)如图1,若分别是上的点,且.求证:为等腰直角三角形;(2)若分别为延长线上的点,如图2,仍有,其他条件不变,那么是否仍为等腰直角三角形?请证明你的结论.

参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形的定义即可解答.【详解】根据轴对称图形的定义可知:选项A不是轴对称图形;选项B是轴对称图形;选项C不是轴对称图形;选项D不是轴对称图形.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【分析】直接将题目中的、根据要求,乘以2计算再整理即可.【详解】解:依题意可得所以分式的值变为原来的故选:C.【点睛】本题考查的是分式的值的变化,这里依据题意给到的条件,代入认真计算即可.3、B【分析】根据同底数幂的乘法法则解答即可.【详解】解:∵2m=1,2n=1,∴2m+n=2m·2n=1×1=1.故选:B.【点睛】本题考查的知识点是同底数幂的乘法的逆运算,掌握同底数幂的乘法法则是解题的关键.4、D【分析】利用1000ד很重要”的人数所占的百分率,即可得出结论.【详解】解:1000×(1-11%-29%)=600故选D.【点睛】此题考查的是扇形统计图,掌握百分率和部分量的求法是解决此题的关键.5、D【分析】根据勾股定理判断这四组线段是否可以构成直角三角形.【详解】A.,错误;B.当n为特定值时才成立,错误;C.,错误;D.,正确;故答案为:D.【点睛】本题考查了直角三角形的性质以及判定,利用勾股定理判断是否可以构成直角三角形是解题的关键.6、B【解析】当3厘米是腰时,则3+3<7,不能组成三角形,应舍去;当7厘米是腰时,则三角形的周长是3+7×2=17(厘米).故选B.7、C【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【详解】解:360÷45=8,所以这个正多边形是正八边形.故选C.8、A【分析】利用负整数指数幂法则,以及倒数的定义判断即可.【详解】2-3==,则2-3的倒数是8,故选:A.【点睛】本题考查了负整数指数幂,以及倒数,熟练掌握运算法则是解本题的关键.9、D【分析】根据因式分解的定义逐项判断即可.【详解】解:A.,变形错误,不是因式分解,不合题意;B.,变形错误,不是因式分解,不合题意;C.,变形错误,不是因式分解,不合题意;D.,变形正确,是因式分解,符合题意.故选:D【点睛】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.10、B【分析】先利用表中的数据分别计算出甲、乙的方差,再进行比较即可.【详解】故选:B.【点睛】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.11、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12、D【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【详解】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.【点睛】本题考查了等腰三角形的判定,灵活的利用等腰三角形的性质确定角的度数是解题的关键.二、填空题(每题4分,共24分)13、15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF,EC⊥CF知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.14、27【分析】作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【详解】如图,作OD⊥AB,OE⊥AC,OF⊥BC,垂足分别为D、E、F,∵OB,OC分别平分∠ABC和∠ACB,∴OD=OE=OF=3,∴S△ABC=S△OBC+S△OAC+S△OAB=AB•OD+AC•OE+BC•OF=OD(AB+BC+AC)=×3×18=27,故答案为27.【点睛】本题考查了角平分线的性质,三角形的面积;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.15、1【分析】作PE⊥OB于E,先根据角平分线的性质求出PE的长度,再根据平行线的性质得∠OPC=∠AOP,然后即可求出∠ECP的度数,再在Rt△ECP中利用直角三角形的性质即可求出结果.【详解】解:作PE⊥OB于E,如图所示:∵PD⊥OA,∴PE=PD=4,∵PC∥OA,∠AOP=∠BOP=15°,∴∠OPC=∠AOP=15°,∴∠ECP=15°+15°=30°,∴PC=2PE=1.故答案为:1.【点睛】本题考查了角平分线的性质定理、三角形的外角性质和30°角的直角三角形的性质,属于基本题型,作PE⊥OB构建角平分线的模型是解题的关键.16、25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.17、230°【分析】

【详解】∵∠A+∠B+∠C+∠D=(4-2)×180°=360°,∠A=90°,∠D=40°,∴∠B+∠C=360°-90°-40°=230°,故答案为230°.【点睛】本题考查了四边形的内角和,熟记四边形的内角和是360度是解题的关键.18、【解析】a3-a=a(a2-1)=三、解答题(共78分)19、【分析】根据角平分线的性质可知,与的角平分线交于点,则,,由三角形内角和,得,把,代入即可求出.【详解】与的角平分线交于点,,,三角形内角和等于,,故答案为:.【点睛】利用角平分线的性质可得,由三角形内角和,可得的两个底角的和为,再次利用三角形内角和可求出结果.20、−【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】=−3−1+3=−.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.21、(1)D=;(2)D=1.【分析】(1)根据运算程序列出算式,先对括号内的分式进行通分相加,把除法转化为乘法,计算乘法即可化简;(2)先求出x的值,然后代入计算,即可得到答案.【详解】解:(1)D====;(2)由题意得,x=2或x=1,当x=2时,能使原分式中的分母为0,分式无意义,∴当x=1时,则D=;【点睛】此题主要考查了方程解的定义和分式的运算,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22、(1)见解析;(2)见解析;(3)与的数量关系是,理由见解析.【分析】(1)利用基本作图作∠ABC的平分线;利用基本作图作BC的垂直平分线,即可完成;

(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,用角平分线的性质证明OH=OG,BH=BG,继而证明EH=DG,然后可证明,于是可得到OE=OD;(3)作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,利用(2)得到CD=BE,,OE=OD,,,可证明,故有,由△的周长=BC可得到DF=EF,于是可证明,所以有,然后可得到与的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC的垂直平分线交BC于G,作OH⊥AB于H,∵BO平分∠ABC,OH⊥AB,OG垂直平分BC,

∴OH=OG,CG=BG,∵OB=OB,∴,

∴BH=BG,

∵BE=CD,

∴EH=BH-BE=BG-CD=CG-CD=DG,在和中,,∴,

∴OE=OD.(3)与的数量关系是,理由如下;如图,作OH⊥AB于H,OG⊥CB于G,在CB上取CD=BE,由(2)可知,因为CD=BE,所以且OE=OD,∴,,∴,∴,∵△的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△和△中,,∴,

∴,∴,∴.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.23、(1)甲仓库存放原料240吨,乙仓库存放原料210吨;(2)W=(20﹣a)m+30000;(3)①当10≤a<20时,W随m的增大而增大,②当a=20时,W随m的增大没变化;③当20≤a≤30时,W随m的增大而减小.【解析】(1)根据甲乙两仓库原料间的关系,可得方程组;(2)根据甲的运费与乙的运费,可得函数关系式;(3)根据一次函数的性质,要分类讨论,可得答案.【详解】解:(1)设甲仓库存放原料x吨,乙仓库存放原料y吨,由题意,得,解得,甲仓库存放原料240吨,乙仓库存放原料210吨;(2)由题意,从甲仓库运m吨原料到工厂,则从乙仓库云原料(300﹣m)吨到工厂,总运费W=(120﹣a)m+100(300﹣m)=(20﹣a)m+30000;(3)①当10≤a<20时,20﹣a>0,由一次函数的性质,得W随m的增大而增大,②当a=20是,20﹣a=0,W随m的增大没变化;③当20≤a≤30时,则20﹣a<0,W随m的增大而减小.【点睛】本题考查了二元一次方程组的应用,一次函数的应用,解(1)的关键是利用等量关系列出二元一次方程组,解(2)的关键是利用运费间的关系得出函数解析式;解(3)的关键是利用一次函数的性质,要分类讨论.24、骑车学生的速度为:15km/h,汽车的速度为:3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论