版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省阳江市普通高校对口单招数学测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.在等差数列中,若a3+a17=10,则S19等于()A.75B.85C.95D.65
2.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是()A.f(x)=1/x2
B.f(x)=x2+1
C.f(x)=x3
D.f(x)-2-x
3.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}
4.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1
B.x2/4-y2=1
C.x2-y2/2=1
D.x2/2-y2=1
5.A.-1B.-4C.4D.2
6.直线x+y+1=0的倾斜角为()A.
B.
C.
D.-1
7.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)
8.6人站成一排,甲乙两人之间必须有2人,不同的站法有()A.144种B.72种C.96种D.84种
9.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
10.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-3
二、填空题(5题)11.
12.若lgx=-1,则x=______.
13.
14.
15.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.
三、计算题(5题)16.解不等式4<|1-3x|<7
17.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
18.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
19.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
20.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、证明题(2题)21.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
22.△ABC的三边分别为a,b,c,为且,求证∠C=
五、简答题(2题)23.化简
24.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
六、综合题(2题)25.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
26.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.
参考答案
1.C
2.A函数的奇偶性,单调性.因为:y=x2在(-∞,0)上是单调递减的,故y=1/x2在(-∞,0)上是单调递增的,又y=1/x2为偶函数,故A对;y=x2+1在(-∞,0)上是单调递减的,故B错;y=x3为奇函数,故C错;y=2-x为非奇非偶函数,故D错.
3.A并集,补集的运算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},
4.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x
5.C
6.C由直线方程可知其斜率k=-1,则倾斜角正切值为tanα=-1,所以倾斜角为3π/4。
7.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.
8.A6人站成一排,甲乙两人之间必须有2人,可以先从其余4人中选出2人,安排在甲乙两人之间,在与其余两人进行排列,所以不同站法共有种。
9.B由题可知,f(x)=f(-x),所以函数是偶函数。
10.A两直线平行的性质.由题意知两条直线的斜率均存在,因为两直线互相.平
11.-5或3
12.1/10对数的运算.x=10-1=1/10
13.1<a<4
14.x+y+2=0
15.45°,由题可知,因此B=45°。
16.
17.
18.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
19.
20.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
21.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出口合同范例文选
- 液化气供应商购销合同
- 集体工资协议模板及指南
- 2024年石灰石供应合同
- 学生责任赔偿协议书范本
- 土地征收项目补偿资金监管
- 标准工程投资合作协议书样式
- 2024年个人租车协议书样本
- 产品无效退款协议书
- 股权转让协议税务承诺书范文2024年
- (完整版)病例演讲比赛PPT模板
- 直播合作协议
- 社科类课题申报工作辅导报告课件
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
评论
0/150
提交评论