版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列各式计算正确的是()A. B. C. D.2.下列式子为最简二次根式的是()A. B. C. D.3.如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm4.如图,于,于,若,平分,则下列结论:①;②;③;④,正确的有()个A. B. C. D.5.如图,是等边三角形,,则的度数为()A.50° B.55° C.60° D.65°6.下列计算正确的是()A.x2•x3=x6 B.(xy)2=xy2 C.(x2)4=x8 D.x2+x3=x57.点P是第二象限的点且到x轴的距离为3、到y轴的距离为4,则点P的坐标是()A.(﹣3,4) B.(3,﹣4) C.(﹣4,3) D.(4,﹣3)8.下列计算正确的是()A. B. C. D.9.能使分式有意义的条件是()A. B. C. D.10.下列运算:,,,其中结果正确的个数为()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.多项式1+9x2加上一个单项式后,使它能成为一个整式的完全平方式,那么加上的单项式可以是_____(填上一个你认为正确的即可).12.在平面直角坐标系中,若点和点关于轴对称,则的值为_______.13.如图,在△ABC中,AB=AC=12,BC=8,BE是高,且点D、F分别是边AB、BC的中点,则△DEF的周长等于_____________________.14.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是_____.15.在△ABC中,∠A=∠B+∠C,∠B=2∠C﹣6°,则∠C的度数为_____.16.计算:__________________.17.如图,中,,的周长是11,于,于,且点是的中点,则_______.18.如图,已知A(3,0),B(0,﹣1),连接AB,过点B的垂线BC,使BC=BA,则点C坐标是_____.三、解答题(共66分)19.(10分)已知:如图,在中,于点,为上一点,连结交于,且,,求证:.20.(6分)已知为等边三角形,点为直线上一动点(点不与点、点重合).连接,以为边向逆时针方向作等边,连接,(1)如图1,当点在边上时:①求证:;②判断之间的数量关系是;(2)如图2,当点在边的延长线上时,其他条件不变,判断之间存在的数量关系,并写出证明过程;(3)如图3,当点在边的反向延长线上时,其他条件不变,请直接写出之间存在的数量关系为.21.(6分)命题:如果三角形一边上的中线与这条边所对内角的平分线重合,那么这个三角形是等腰三角形.请自己画图,写出已知、求证,并对命题进行证明.已知:如图,求证:证明:22.(8分)已知xa=3,xb=6,xc=12,xd=1.(1)求证:①a+c=2b;②a+b=d;(2)求x2a﹣b+c的值.23.(8分)如图,在四边形ABCD中,AB=AD,CA平分∠BCD,AE⊥BC于点E,AF⊥CD交CD的延长线于点F.求证:△ABE≌△ADF.24.(8分)如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.25.(10分),两种机器人都被用来搬运化工原料,型机器人每小时搬运的化工原料是型机器人每小时搬运的化工原料的1.5倍,型机器人搬运900所用时间比型机器人搬运800所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由6个型机器人搬运3小时,再增加若干个型机器人一起搬运,请问至少要增加多少个型机器人?26.(10分)如图,已知点、、、在同一条直线上,,,,连结、.(1)请直接写出图中所有的全等三角形(不添加其它的线);(2)从(1)中的全等三角形中任选一组进行证明.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析:A.,故原选项错误;B.,故原选项错误;C.,故原选项错误;D.,正确.故选D.2、B【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【详解】A.,故不符合题意;B.是最简二次根式,符合题意;C.,故不符合题意;D.,故不符合题意.故选:B【点睛】本题考查最简二次根式的定义,掌握最简二次根式必须满足的两个条件是解题关键.3、C【分析】根据线段垂直平分线的性质和三角形的周长公式即可得到结论.【详解】∵DE是边AB的垂直平分线,∴AE=BE.∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=1.又∵BC=8,∴AC=10(cm).故选C.【点睛】此题考查线段垂直平分线的性质,解题关键在于掌握计算公式.4、D【分析】根据角平分线的性质即可判断①;根据HL可得Rt△DBE≌Rt△DCF,进而可得∠DBE=∠C,BE=CF,于是可判断②;根据平角的定义和等量代换即可判断③;根据HL可得Rt△ADE≌Rt△ADF,于是可得AE=AF,进一步根据线段的和差关系即可判断④,从而可得答案.【详解】解:∵平分,于,于,∴,DE=DF,故①正确;在Rt△DBE和Rt△DCF中,∵DE=DF,,∴Rt△DBE≌Rt△DCF(HL),∴∠DBE=∠C,BE=CF,故②正确;∵,∴,故③正确;在Rt△ADE和Rt△ADF中,∵DE=DF,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴,故④正确;综上,正确的结论是:①②③④,有4个.故选:D.【点睛】本题主要考查了角平分线的性质、全等三角形的判定和性质等知识,属于常考题型,熟练掌握上述知识是解题的关键.5、A【分析】利用等边三角形三边相等,结合已知BC=BD,易证、都是等腰三角形,利用等边对等角及三角形内角和定理即可求得的度数.【详解】是等边三角形,,又,,,,,故选A.【点睛】本题考查了等边三角形、等腰三角形的性质、等边对等角以及三角形内角和定理,熟练掌握性质和定理是正确解答本题的关键.6、C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A.x2•x3=x5,故原题计算错误;B.(xy)2=x2y2,故原题计算错误;C.(x2)4=x8,故原题计算正确;D.x2和x3不是同类项,故原题计算错误.故选C.【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则.7、C【详解】由点且到x轴的距离为2、到y轴的距离为1,得
|y|=2,|x|=1.
由P是第二象限的点,得
x=-1,y=2.
即点P的坐标是(-1,2),
故选C.8、D【分析】根据合并同类项、同底数幂的乘除运算可进行排除选项.【详解】A、,故错误;B、,故错误;C、,故错误;D、,故正确;故选D.【点睛】本题主要考查合并同类项及同底数幂的乘除运算,熟练掌握合并同类项及同底数幂的乘除运算是解题的关键.9、B【解析】先根据分式有意义的条件列出关于的不等式,再求出的取值范围即可.【详解】解:∵分式有意义∴∴.故选:B.【点睛】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题关键.10、B【分析】由题意根据同底数幂的除法与乘法、幂的乘方和积的乘方,依次对选项进行判断即可.【详解】解:,故计算错误;,故计算正确;,故计算错误;,故计算正确;正确的共2个,故选:B.【点睛】本题考查同底数幂的除法与乘法、幂的乘方和积的乘方问题,关键是根据同底数幂的除法与乘法以及幂的乘方和积的乘方的法则进行分析.二、填空题(每小题3分,共24分)11、6x或﹣6x或x2或﹣1或﹣9x1.【分析】分9x1是平方项与乘积二倍项,以及单项式的平方三种情况,根据完全平方公式讨论求解.【详解】解:①当9x1是平方项时,1±6x+9x1=(1±3x)1,∴可添加的项是6x或﹣6x,②当9x1是乘积二倍项时,1+9x1+x2=(1+x1)1,∴可添加的项是x2.③添加﹣1或﹣9x1.故答案为:6x或﹣6x或x2或﹣1或﹣9x1.【点睛】本题考查了完全平方式,解题过程中注意分类讨论,熟练掌握完全平方式的结构特征是解题的关键.12、【分析】由关于x轴对称横坐标相同可列出关于m的一元一次方程,求解即可.【详解】解:由点和点关于轴对称可得点P与点Q的横坐标相同即,解得.所以的值为.故答案为:.【点睛】本题考查了平面直角坐标系中的轴对称,灵活利用点关于坐标轴对称的特点是解题的关键.13、1【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.【详解】解:点D、F分别是边AB、BC的中点,
∴DF=AC=6∵BE是高∴∠BEC=∠BEA=90°∴DE=AB=6,EF=BC=4
∴△DEF的周长=DE+DF+EF=1
故答案为:1.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.14、AC=BC【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【详解】添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为AC=BC.【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15、32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.16、x1-y1【分析】根据平方差公式(a+b)(a-b)=a1-b1计算,其特点是:一项的符号相同,另一项项的符号相反,可得到答案.【详解】x1-y1.故答案为:x1-y1.【点睛】此题主要考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.17、【分析】根据直角三角形斜边上的中线等于斜边的一半可得,,通过计算可求得AB,再利用勾股定理即可求得答案.【详解】∵AF⊥BC,BE⊥AC,D是AB的中点,
∴,∵AB=AC,AF⊥BC,
∴点F是BC的中点,∴,
∵BE⊥AC,
∴,∴的周长,
∴,在中,即,解得:.故答案为:.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质以及勾股定理,熟记各性质是解题的关键.18、C(1,﹣4)【分析】过点作CE⊥y轴于E,证明△AOB≌△BEC(AAS),得出OA=BE,OB=CE,再求出OA=3,OB=1,即可得出结论;【详解】解:如图,过点作CE⊥y轴于E,∴∠BEC=90°,∴∠BCE+∠CBE=90°,∵AB⊥BC,∴∠ABC=90°,∴∠ABO+∠CBE=90°,∴∠ABO=∠BCE,在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴OA=BE,OB=CE,∵A(3,0),B(0,﹣1),∴OA=3,OB=1,∴CE=1,BE=3,∴OE=OB+BE=4,∴C(1,﹣4).【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,坐标与图形,余角的性质等知识,构造出全等三角形是解本题的关键.三、解答题(共66分)19、详见解析.【解析】根据HL证明Rt△BDF≌Rt△ADC,进而解答即可.【详解】∵AD⊥BC,∴∠BDF=∠ADC=90°.在Rt△BDF和Rt△ADC中,,∴Rt△BDF≌Rt△ADC(HL),∴∠FBD=∠DAC.又∵∠BFD=∠AFE,∴∠AEF=∠BDF=90°,∴BE⊥AC.【点睛】本题考查了全等三角形的判定和性质,关键是根据HL证明Rt△BDF≌Rt△ADC.20、(1)①见解析;②AC=CE+CD;(2)CE=AC+CD,证明见解析;(3)CD=CE+AC.【分析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=AC,AD=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出AC=BC=CD+CE;
(2)同(1)先证明△ABD≌△ACE,从而可得出BD=BC+CD=AC+CD=CE;(3)同(1)先证明△ABD≌△ACE,从而可得出CE+AC=CD.【详解】解:(1)①∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠DAC=∠DAE-∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中,∴△ABD≌△ACE(SAS).
②∵△ABD≌△ACE,
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD,∴AC=CE+CD,故答案为:AC=CE+CD;
(2)AC+CD=CE.证明如下:
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC+∠DAC=∠DAE+∠DAC,
∴∠BAD=∠EAC.
在△ABD和△ACE中,∴△ABD≌△ACE(SAS).
∴BD=CE.
∵BD=BC+CD,
∴CE=AC+CD;(3)DC=CE+BC.证明如下:
∵△ABC和△ADE是等边三角形,
∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.
∴∠BAC-∠BAE=∠DAE-∠BAE,
∴∠BAD=∠EAC.
在△ABD和△ACE中,∴△ABD≌△ACE(SAS).
∴BD=CE.
∵CD=BD+BC,
∴CD=CE+AC.故答案为:CD=CE+AC.【点睛】本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.21、见解析【分析】由角平分线的性质得出DE=DF,证明Rt△BDE≌Rt△CDF(HL),得出∠B=∠C,即可得出结论.【详解】已知:如图,在△ABC中,AD是BC边上的中线,AD平分∠BAC;求证:AB=AC.证明:作DE⊥AB于E,DF⊥AC于F,如图所示:则∠BED=∠CFD=90°,∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∵AD是BC边上的中线,∴BD=CD,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL),∴∠B=∠C,∴AB=AC.【点睛】本题考查了等腰三角形的判定、全等三角形的判定与性质、角平分线的性质等知识;熟练掌握等腰三角形的判定定理,证明三角形全等是解题的关键.22、(1)①证明见解析;②证明见解析;(2)1.【分析】(1)根据同底数幂的乘法法则xa+c=x2b.xa•xb=xd.据此即可证得①a+c=2b;②a+b=d;(2)由(1)的结论①+②得2a+b+c=2b+d,移项合并即可得原式=xd=1.【详解】(1)证明:①∵3×12=62,∴xa•xc=(xb)2即xa+c=x2b,∴a+c=2b.②∵3×6=1,∴xa•xb=xd.即xa+b=xd.∴a+b=d;(2)解:由(1)知a+c=2b,a+b=d.则有:2a+b+c=2b+d,∴2a﹣b+c=d∴x2a﹣b+c=xd=1.【点睛】本题考查同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算性质是解题的关键.23、证明见解析【解析】试题分析:由CA平分∠BCD,AE⊥BC于E,AF⊥CD,可得AE=AF,再由HL判定Rt△AEB≌Rt△AFD,即可得出结论.试题解析:∵CA平分∠BCD,AE⊥BC,AF⊥CD,∴AE=AF.在Rt△ABE和Rt△ADF中,∵∴△ABE≌△ADF(HL).24、(1)3;(2)1.【分析】(1)先根据勾股定理求出BC的长度;
(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC和△ACD的面积和,再利用三角形的面积公式求解即可.【详解】解:(1)∵∠ABC=90°,AC=5,AB=4
∴BC=,(2)在△ACD中,AC2+CD2=52+122=169AD2=132=169,∴AC2+CD2=AD2,
∴△ACD是直角三角形,
∴∠ACD=90°;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版电力工程设计咨询合同2篇
- 二零二五年度高新技术企业承包商担保合同3篇
- 二零二五版户外用品促销员活动策划合同2篇
- 二零二五年度酒店前台正规雇佣合同范本(含劳动合同变更及续签规则)3篇
- 二零二五版港口安全评价与安全管理合同3篇
- 二零二五版环保工程保险合同3篇
- 二零二五版外资企业往来借款税务筹划合同3篇
- 二零二五年财务顾问企业财务管理咨询合同3篇
- 二零二五版智能家居产品销售安装合同2篇
- 二零二五年度钢筋行业购销合同规范范本5篇
- 《阻燃材料与技术》课件 第8讲 阻燃木质材料
- 低空经济的社会接受度与伦理问题分析
- JGJ120-2012建筑基坑支护技术规程-20220807013156
- 英语代词专项训练100(附答案)含解析
- GB/T 4732.1-2024压力容器分析设计第1部分:通用要求
- 《采矿工程英语》课件
- NB-T31045-2013风电场运行指标与评价导则
- NB-T+10488-2021水电工程砂石加工系统设计规范
- 天津市和平区2023-2024学年七年级下学期6月期末历史试题
- 微型消防站消防员培训内容
- (完整版)钢筋加工棚验算
评论
0/150
提交评论