版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在中国象棋棋盘中,如果将“卒”的位置记作,那么“相”的位置可记作()A. B. C. D.2.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使的是()A.AC=BD B.∠C=∠D C.AC∥BD D.OC=OD3.4的算术平方根是()A.±2 B.2 C.﹣2 D.±164.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30° B.35° C.45° D.60°5.若分式有意义,则满足的条件是()A.或-2 B. C. D.6.等腰三角形的两边分别等于5、12,则它的周长为()A.29 B.22 C.22或29 D.177.已知点到轴的距离为3,到轴距离为2,且在第四象限内,则点的坐标为()A.(2,3) B.(2,-3) C.(3,-2) D.不能确定8.如果等腰三角形的一个角是80°,那么它的底角是A.80°或50°B.50°或20°C.80°或20°D.50°9.若有意义,则x的取值范围是().A.x>﹣1 B.x≥0 C.x≥﹣1 D.任意实数10.正常情况下,一个成年人的一根头发大约是0.0000012千克,用科学记数法表示应该是()A.1.2×10﹣5 B.1.2×10﹣6 C.0.12×10﹣5 D.0.12×10﹣611.下列分式中,是最简分式的是()A. B. C. D.12.下列整式的运算中,正确的是()A. B.C. D.二、填空题(每题4分,共24分)13.如图,在中,,,,点在上,将沿折叠,点落在点处,与相交于点,若,则的长是__________.14.分解因式6xy2-9x2y-y3=_____________.15.若一个多边形内角和等于1260°,则该多边形边数是______.16.把多项式分解因式的结果为__________________.17.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D、C两点分别落在D'、C'的位置,并利用量角器量得∠EFB=65°,则∠AED'等于_____度.18.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC.其中正确的结论是_____(填序号).三、解答题(共78分)19.(8分)过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=,求EF的长.20.(8分)如图,在等边中,点,分别是,上的动点,且,交于点.(1)如图1,求证;(2)点是边的中点,连接,.①如图2,若点,,三点共线,则与的数量关系是;②若点,,三点不共线,如图3,问①中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.21.(8分)如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.22.(10分)某中学八年级的同学参加义务劳动,其中有两个班的同学在两处参加劳动,另外两个班级在道路两处劳动(如图),现要在道路的交叉区域内设置一个茶水供应点P,使P到的距离相等,且使,请找出点P的位置(要求尺规作图,不写作法,保留痕迹)23.(10分)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2015年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)实际每年绿化面积为多少万平方米?(2)为加大创建力度,市政府决定从2018年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?24.(10分)先化简,再求值:,其中x=,.25.(12分)计算:﹣(2020﹣π)0+()﹣2﹣.26.口罩是疫情防控的重要物资,某药店销售A、B两种品牌口罩,购买2盒A品牌和3盒B牌的口罩共需480元;购买3盒A品牌和1盒B牌的口罩共需370元.(1)求这两种品牌口罩的单价.(2)学校开学前夕,该药店对学生进行优恵销售这两种口罩,具体办法如下:A品牌口罩按原价的八折销售,B品牌口罩5盒以内(包含5盒)按原价销售,超出5盒的部分按原价的七折销售,设购买x盒A品牌的口罩需要的元,购买x盒B品牌的口罩需要元,分别求出、关于x的函数关系式.(3)当需要购买50盒口罩时,买哪种品牌的口罩更合算?
参考答案一、选择题(每题4分,共48分)1、C【分析】根据“卒”所在的位置可以用表示,可知数对中第一个数字表示列,第二个数字表示行,据此可用数对表示出“相”的位置.【详解】用数对分别表示图中棋子“相”的位置:;故选:C.【点睛】此题是考查点与数对,关键是根据已知条件确定数对中每个数字所表示的意义.2、A【分析】已知AO=BO,由对顶角相等可得到∠AOC=∠BOD,当添加条件A后,不能得到△AOC≌△BOD;接下来,分析添加其余选项的条件后能否得到证明三角形全等的条件,据此解答【详解】解:题目隐含一个条件是∠AOC=∠BOD,已知是AO=BOA.加AC=BD,根据SSA判定△AOC≌△BOD;B.加∠C=∠D,根据AAS判定△AOC≌△BOD;C.加AC∥BD,则ASA或AAS能判定△AOC≌△BOD;D.加OC=OD,根据SAS判定△AOC≌△BOD故选A【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、B【解析】若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根,可得4的算术平方根为2.故选B.4、B【解析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【详解】作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选B.【点睛】本题考查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.5、B【分析】根据分式有意义的条件:分母不能为0进行计算即可.【详解】∵分式有意义,∴a-1≠0,∴a≠1.故选:B.【点睛】考查了分式有意义的条件,解题关键是熟记:当分母不为0时,分式有意义.6、A【解析】试题解析:有两种情况:①当腰是12时,三边是12,12,5,它的周长是12+12+5=29;②当腰是5时,三边是12,5,5,∵5+5<12,∴此时不能组成三角形.故选A.考点:1.等腰三角形的性质;2.三角形三边关系.7、B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),
故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).8、A【解析】根据题意,分已知角是底角与不是底角两种情况讨论,结合三角形内角和等于180°,分析可得答案.【详解】根据题意,一个等腰三角形的一个角等于80°,
①当这个角是底角时,即该等腰三角形的底角的度数是80°,
②当这个角80°是顶角,
设等腰三角形的底角是x°,
则2x+80°=180°,
解可得,x=50°,
即该等腰三角形的底角的度数是50°;
故选:A.【点睛】考查了等腰三角形的性质,及三角形内角和定理;通过三角形内角和,列出方程求解是正确解答本题的关键.9、C【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C.【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.10、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000012=1.2×10﹣1.故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11、B【分析】根据最简分式的定义进行判断即可得解.【详解】解:A.,故本选项不是最简分式;B.的分子、分母没有公因数或公因式,故本选项是最简分式;C.,故本选项不是最简分式;D.,故本选项不是最简分式.故选:B【点睛】本题考查了最简分式,熟记最简分式的定义是进行正确判断的关键.12、D【分析】根据同底数幂的乘法,积的乘方,幂的乘方逐一判断即可.【详解】解:A、,故A错误;B、,故B错误;C、与不是同类项,不能合并,故C错误;D、,正确,故答案为:D.【点睛】本题考查了底数幂的乘法,积的乘方,幂的乘方,解题的关键是掌握幂的运算法则.二、填空题(每题4分,共24分)13、【分析】利用平行线的性质及折叠的性质得到,即AB⊥CE,再根据勾股定理求出,再利用面积法求出CE.【详解】∵,∴,由折叠得:,∵,∴,∴,∴AB⊥CE,∵,,,∴,∵,∴,∴CE=,∴,∵,∴,∴,故答案为:.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB⊥CE是解题的关键.14、-y(3x-y)2【解析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.15、1【解析】试题分析:这个多边形的内角和是1260°.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.试题解析:根据题意,得(n-2)•180=1260,解得n=1.考点:多边形内角与外角.16、【分析】先提取公因式,再根据完全平方公式分解.【详解】解:.故答案为:.【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题关键.17、1【分析】先求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=65°,
∴∠EFC=180°-65°=115°,
∵四边形ABCD是长方形,
∴AD∥BC,
∴∠DEF=180°-∠EFC=180°-115°=65°,
∵沿EF折叠D和D′重合,
∴∠D′EF=∠DEF=65°,
∴∠AED′=180°-65°-65°=1°,
故答案为:1.【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,注意:两直线平行,同旁内角互补.18、①②③【解析】解:在△AEF和△ABC中,∵AB=AE,∠B=∠E,BC=EF,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EFA,∴∠EAB=∠FAC,故①②③正确,④错误;所以答案为:①②③.点睛:本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决问题的关键.三、解答题(共78分)19、(1)证明见解析;(2).【分析】(1)由矩形的性质可得∠ACB=∠DAC,然后利用“ASA”证明△AOF和△COE全等,根据全等三角形对应边相等可得OE=OF,即可证四边形AECF是菱形;(2)由菱形的性质可得:菱形AECF的面积=EC×AB=AC×EF,进而得到EF的长.【详解】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)∵菱形AECF的面积=EC×AB=AC×EF,又∵AB=6,AC=10,EC=,∴×6=×10×EF,解得EF=.【点睛】考核知识点:菱形性质.理解性质是关键.20、(1)证明过程见详解;(2)①;②结论成立,证明见详解【分析】(1)先证明,得出对应角相等,然后利用四边形的内角和和对顶角相等即可得出结论;(2)①;由等边三角形的性质和已知条件得出AM⊥BC,∠CAP=30°,可得PB=PC,由∠BPC=120°和等腰三角形的性质可得∠PCB=30°,进而可得AP=PC,由30°角的直角三角形的性质可得PC=2PM,于是可得结论;②延长BP至D,使PD=PC,连接AD、CD,根据SAS可证△ACD≌△BCP,得出AD=BP,∠ADC=∠BPC=120°,然后延长PM至N,使MN=MP,连接CN,易证△CMN≌△BMP(SAS),可得CN=BP=AD,∠NCM=∠PBM,最后再根据SAS证明△ADP≌△NCP,即可证得结论.【详解】(1)证明:因为△ABC为等边三角形,所以∵,∴,∴,在四边形AEPD中,∵,∴,∴,∴;(2)①如图2,∵△ABC是等边三角形,点M是边BC的中点,∴∠BAC=∠ABC=∠ACB=60°,AM⊥BC,∠CAP=∠BAC=30°,∴PB=PC,∵∠BPC=120°,∴∠PBC=∠PCB=30°,∴PC=2PM,∠ACP=60°﹣30°=30°=∠CAP,∴AP=PC,∴AP=2PM;故答案为:;②AP=2PM成立,理由如下:延长BP至D,使PD=PC,连接AD、CD,如图4所示:则∠CPD=180°﹣∠BPC=60°,∴△PCD是等边三角形,∴CD=PD=PC,∠PDC=∠PCD=60°,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°=∠PCD,∴∠BCP=∠ACD,∴△ACD≌△BCP(SAS),∴AD=BP,∠ADC=∠BPC=120°,∴∠ADP=120°﹣60°=60°,延长PM至N,使MN=MP,连接CN,∵点M是边BC的中点,∴CM=BM,∴△CMN≌△BMP(SAS),∴CN=BP=AD,∠NCM=∠PBM,∴CN∥BP,∴∠NCP+∠BPC=180°,∴∠NCP=60°=∠ADP,在△ADP和△NCP中,∵AD=NC,∠ADP=∠NCP,PD=PC,∴△ADP≌△NCP(SAS),∴AP=PN=2CM;【点睛】本题是三角形的综合题,主要考查了等边三角形的判定与性质、全等三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.21、++1.【解析】先根据题意得出AD=BD,再由勾股定理得出AB的长.在Rt△ADC中,根据直角三角形的性质得出AC及CD的长,进而可得出结论.【详解】∵AD⊥BC,∴∠ADB=∠ADC=90°.在Rt△ADB中,∵∠B+∠BAD=90°,∠B=45°,∴∠B=∠BAD=45°,∴AD=BD=1,AB.在Rt△ADC中,∵∠C=10°,∴AC=2AD=2,∴CD,BC=BD+CD=1,∴AB+AC+BC1.【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.22、见解析【分析】根据可知,点P在DE的垂直平分线上,再根据P到的距离相等可知,点P在的角平分线上,所以DE的垂直平分线与的角平分线的交点即为所求的点P.【详解】如图【点睛】本题主要考查角平分线和垂直平分线性质的应用,掌握角平分线和垂直平分线的尺规作图是解题的关键.23、(1)实际每年绿化面积为54万平方米;(2)实际平均每年绿化面积至少还要增加1万平方米.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【详解】(1)设原计划每年绿化面积为x万平方米,则实际
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新世纪版选修6历史下册月考试卷含答案
- 2025年人民版必修3历史下册月考试卷含答案
- 2025年人教A新版九年级地理下册阶段测试试卷含答案
- 2025年沪科版八年级历史下册阶段测试试卷含答案
- 2025年教科新版必修3生物下册月考试卷含答案
- 2025年新科版选择性必修3生物下册阶段测试试卷含答案
- 2025年湘师大新版选择性必修1化学上册月考试卷含答案
- 2025年沪科新版高三历史上册月考试卷含答案
- 美容院二零二五年度美容仪器研发与创新基金投资合同4篇
- 2025年度绿色生态门面房购置与生态旅游开发合同4篇
- 课题申报书:GenAI赋能新质人才培养的生成式学习设计研究
- 骆驼祥子-(一)-剧本
- 全国医院数量统计
- 《中国香文化》课件
- 2024年医美行业社媒平台人群趋势洞察报告-医美行业观察星秀传媒
- 第六次全国幽门螺杆菌感染处理共识报告-
- 天津市2023-2024学年七年级上学期期末考试数学试题(含答案)
- 经济学的思维方式(第13版)
- 盘锦市重点中学2024年中考英语全真模拟试卷含答案
- 湖北教育出版社四年级下册信息技术教案
- 背景调查报告
评论
0/150
提交评论