版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列不等式成立的是( )ABCD2已知直线过双曲线C:的左焦点F,且与双曲线C在第二象限交于点A,若(
2、O为坐标原点),则双曲线C的离心率为ABCD3已知直三棱柱中,则异面直线与所成的角的正弦值为( )ABCD4很多关于整数规律的猜想都通俗易懂,吸引了大量的数学家和数学爱好者,有些猜想已经被数学家证明,如“费马大定理”,但大多猜想还未被证明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的内容是:对于每一个正整数,如果它是奇数,则将它乘以再加1;如果它是偶数,则将它除以;如此循环,最终都能够得到.下图为研究“角谷猜想”的一个程序框图.若输入的值为,则输出i的值为( )ABCD5如果直线与圆相交,则点与圆C的位置关系是( )A点M在圆C上B点M在圆C外C点M在圆C内D上述三种情况都有可能6已知全集
3、,集合,则=( )ABCD7在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:;平面平面:异面直线与所成角为其中正确命题的个数为( )A1B2C3D48函数的定义域为( )A或B或CD9已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为( )ABCD10数列满足:,为其前n项和,则( )A0B1C3D411已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a的取值范围是()ABCD12若数列为等差数列,且满足,为数列的前项和,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知数列的前项和且,设,则的值等
4、于_ .14从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为_.15抛物线的焦点到准线的距离为 16已知,则展开式的系数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,射线与曲线交于点,将射线绕极点逆时针方向旋转交曲线于点.(1)求曲线的参数方程;(2)求面积的最大值18(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过
5、就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.19(12分)己知,.(1)求证:;(2)若,求证:.20(12分)如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角的余弦值.21(12分)已知函数()求在点处的切线方程;()求证:在
6、上存在唯一的极大值;()直接写出函数在上的零点个数22(10分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据指数函数、对数函数、幂函数的单调性和正余弦函数的图象可确定各个选项的正误.【详解】对于,错误;对于,在上单调递减,错误;对于,错误;对于,在上单调递增,正确.故选:.【点睛】本题考查根据初等函数的单调性比较大小的问题;关键是熟练掌握正余弦函数图象、指数函数、对数函数和幂函数的单调性.2B【解析】直线的倾斜角为,易得设双曲线C的右焦点为
7、E,可得中,则,所以双曲线C的离心率为.故选B3C【解析】设M,N,P分别为和的中点,得出的夹角为MN和NP夹角或其补角,根据中位线定理,结合余弦定理求出和的余弦值再求其正弦值即可.【详解】根据题意画出图形:设M,N,P分别为和的中点,则的夹角为MN和NP夹角或其补角可知,.作BC中点Q,则为直角三角形;中,由余弦定理得,在中,在中,由余弦定理得所以故选:C【点睛】此题考查异面直线夹角,关键点通过平移将异面直线夹角转化为同一平面内的夹角,属于较易题目.4B【解析】根据程序框图列举出程序的每一步,即可得出输出结果.【详解】输入,不成立,是偶数成立,则,;不成立,是偶数不成立,则,;不成立,是偶数
8、成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;不成立,是偶数成立,则,;成立,跳出循环,输出i的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.5B【解析】根据圆心到直线的距离小于半径可得满足的条件,利用与圆心的距离判断即可.【详解】直线与圆相交,圆心到直线的距离,即也就是点到圆的圆心的距离大于半径即点与圆的位置关系是点在圆外故选:【点睛】本题主要考查直线与圆相交的性质,考查点到直线距离公式的应用,属于中档题6D【解析】先计算集合,再计算,最后计算【详解】解:,故选:【点睛】本题主要考查了集合的交,补混合运算,注意分清集合间的关系,属于基础
9、题7B【解析】设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出的正误;判断是的中点推出正的误;利用直线与平面垂直推出平面与平面垂直推出正的误;建立空间直角坐标系求出异面直线与所成角判断的正误【详解】解:不妨设棱长为:2,对于连结,则,即与不垂直,又,不正确;对于,连结,在中,而,是的中点,所以,正确;对于由可知,在中,连结,易知,而在中,即,又,面,平面平面,正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;, , , , ;, ;异面直线与所成角为,故不正确故选:【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,
10、直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力8A【解析】根据偶次根式被开方数非负可得出关于的不等式,即可解得函数的定义域.【详解】由题意可得,解得或.因此,函数的定义域为或.故选:A.【点睛】本题考查具体函数定义域的求解,考查计算能力,属于基础题.9B【解析】由题可知,再结合双曲线第一定义,可得,对有,即,解得,再对,由勾股定理可得,化简即可求解【详解】如图,因为,所以.因为所以.在中,即,得,则.在中,由得.故选:B【点睛】本题考查双曲线的离心率求法,几何性质的应用,属于中档题10D【解析】用去换中的n,得,相加即可找到数列的周期,再利用计算.【详解】由已知,所以,+,得,从
11、而,数列是以6为周期的周期数列,且前6项分别为1,2,1,-1,-2,-1,所以,.故选:D.【点睛】本题考查周期数列的应用,在求时,先算出一个周期的和即,再将表示成即可,本题是一道中档题.11A【解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间
12、,即,故选:A【点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12B【解析】利用等差数列性质,若,则 求出,再利用等差数列前项和公式得【详解】解:因为 ,由等差数列性质,若,则得,为数列的前项和,则故选:【点睛】本题考查等差数列性质与等差数列前项和.(1)如果为等差数列,若,则 (2)要注意等差数列前项和公式的灵活应用,如.二、填空题:本题共4小题
13、,每小题5分,共20分。137【解析】根据题意,当时,可得,进而得数列为等比数列,再计算可得,进而可得结论.【详解】由题意,当时,又,解得,当时,由,所以,即,故数列是以为首项,为公比的等比数列,故,又,所以,.故答案为:.【点睛】本题考查了数列递推关系、函数求值,考查了推理能力与计算能力,计算得是解决本题的关键,属于中档题.14【解析】基本事件总数,抽得的第一张卡片上的数不小于第二张卡片上的数包含的基本事件有10种,由此能求出抽得的第一张卡片上的数不小于第二张卡片上的数的概率【详解】从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数,抽得的第一张卡片上的数不
14、小于第二张卡片上的数包含的基本事件有10种,分别为:,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为故答案为:【点睛】本题考查古典概型概率的求法,考查运算求解能力,求解时注意辨别概率的模型15【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质16【解析】先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(为参数);(2).【解析】(1)根据伸缩变换结
15、合曲线的参数方程可得出曲线的参数方程;(2)将曲线的方程化为普通方程,然后化为极坐标方程,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程,得出和关于的表达式,然后利用三角恒等变换思想即可求出面积的最大值【详解】(1)由于曲线的参数方程为(为参数),将曲线上每一点的横坐标变为原来的倍,纵坐标不变,得到曲线,则曲线的参数方程为(为参数);(2)将曲线的参数方程化为普通方程得,化为极坐标方程得,即,设点的极坐标为,点的极坐标为,将这两点的极坐标代入椭圆的极坐标方程得,的面积为,当时,的面积取到最大值.【点睛】本题考查参数方程、极坐标方程与普通方程的互化,考查了伸缩变换,同时也考查
16、了利用极坐标方程求解三角形面积的最值问题,要熟悉极坐标方程所适用的基本类型,考查分析问题和解决问题的能力,属于中等题.18(1)(2)【解析】(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差的绝对值的频率分布列为下表:
17、00.010.020.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题19(1)证明见解析(2)证明见解析【解析】(1)采用分析法论证,要证,分式化
18、整式为,再利用立方和公式转化为,再作差提取公因式论证.(2)由基本不等式得,再用不等式的基本性质论证.【详解】(1)要证,即证,即证,即证,即证,即证,该式显然成立,当且仅当时等号成立,故.(2)由基本不等式得,当且仅当时等号成立.将上面四式相加,可得,即.【点睛】本题考查证明不等式的方法、基本不等式,还考查推理论证能力以及化归与转化思想,属于中档题.20(1)证明见解析(2)【解析】(1)根据面面垂直的判定定理可知,只需证明平面即可由为菱形可得,连接和与的交点,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为
19、轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值【详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.不妨设,则,则,设为平面的法向量,则即可取,设为平面的法向量,则即可取,所以.所以二面角的余弦值为0.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题21();()证明见解析;()函数在有3个零点【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024视频监控工程合同书
- xx 企业未成年员工保护方案
- 2024普通临时劳务用工合同范本
- 2024货物运输代理合同新版范文
- 华中师范大学《教师嗓音训练》2021-2022学年第一学期期末试卷
- 西平铁路48m箱梁满堂支架检算
- 2024药店转让合同范文
- 汽车制造业零部件采购制度
- 自来水质量提升技术方案
- 2024土地平整工程施工合同
- 高二上学期化学人教版(2019)选择性必修1实验计划
- 六年级下册音乐教案第六单元《毕业歌》人教新课标
- 世界咖啡介绍 PPT
- 中医药膳学全套课件
- 马王堆出土文物艺术欣赏-课件
- 初中语文人教六年级下册《专题阅读:概括主要事件》PPT
- 13、停电停水等突发事件的应急预案以及消防制度
- DB42T1811-2022西瓜设施育苗技术规程
- 早教托育园招商加盟商业计划书
- 医疗HRP整体解决方案课件
- 分布式光伏安装清包合同
评论
0/150
提交评论