版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如果实数满足条件,那么的最大值为( )ABCD2如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD3己知四棱锥中,四边形为等腰梯形,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最
2、大值为( )ABCD4已知双曲线的一条渐近线经过圆的圆心,则双曲线的离心率为( )ABCD25若函数()的图象过点,则( )A函数的值域是B点是的一个对称中心C函数的最小正周期是D直线是的一条对称轴6要排出高三某班一天中,语文、数学、英语各节,自习课节的功课表,其中上午节,下午节,若要求节语文课必须相邻且节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是( )ABCD7已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD8若直线l不平行于平面,且l,则( )A内所有直线与l异面B内只存在有限条直线与l共面C内存在唯一的直线与l平行D内存在无数条直线与l相交9
3、若函数的图象如图所示,则的解析式可能是( )ABCD10一只蚂蚁在边长为的正三角形区域内随机爬行,则在离三个顶点距离都大于的区域内的概率为( )ABCD11若执行如图所示的程序框图,则输出的值是( )ABCD412已知双曲线的一个焦点为,且与双曲线的渐近线相同,则双曲线的标准方程为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为_.14已知函数有且只有一个零点,则实数的取值范围为_.15如图,椭圆:的离心率为,F是的右焦点,点P是上第一角限内任意一点,若,则的取值范围是_16在
4、三棱锥中,三条侧棱两两垂直,则三棱锥外接球的表面积的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 18(12分)已知椭圆:(),四点,中恰有三点在椭圆上.(1)求椭圆的方程;(2)设椭圆的左右顶点分别为.是椭圆上异于的动点,求的正切的最大值.19(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范
5、围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.(1)求的值;(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?文科生理科生合计获奖6不获奖合计400(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.879
6、10.82820(12分)已知函数.(1)当a=2时,求不等式的解集;(2)设函数.当时,求的取值范围.21(12分)已知实数x,y,z满足,证明:.22(10分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】解:当直线过点时,最大,故选B2A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所
7、以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。3A【解析】根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.4B【解析】求出圆心,代
8、入渐近线方程,找到的关系,即可求解.【详解】解:,一条渐近线,故选:B【点睛】利用的关系求双曲线的离心率,是基础题.5A【解析】根据函数的图像过点,求出,可得,再利用余弦函数的图像与性质,得出结论.【详解】由函数()的图象过点,可得,即,故,对于A,由,则,故A正确;对于B,当时,故B错误;对于C,故C错误;对于D,当时,故D错误;故选:A【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题.6C【解析】根据题意,分两种情况进行讨论:语文和数学都安排在上午;语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答
9、案【详解】根据题意,分两种情况进行讨论:语文和数学都安排在上午,要求节语文课必须相邻且节数学课也必须相邻,将节语文课和节数学课分别捆绑,然后在剩余节课中选节到上午,由于节英语课不加以区分,此时,排法种数为种;语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但节语文课不加以区分,节数学课不加以区分,节英语课也不加以区分,此时,排法种数为种.综上所述,共有种不同的排法.故选:C【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题7C【解析】根据题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【详解】根据题意,函数是定义在上的偶函数,
10、则,有,又由在上单调递增,则有,故选C.【点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题8D【解析】通过条件判断直线l与平面相交,于是可以判断ABCD的正误.【详解】根据直线l不平行于平面,且l可知直线l与平面相交,于是ABC错误,故选D.【点睛】本题主要考查直线与平面的位置关系,直线与直线的位置关系,难度不大.9A【解析】由函数性质,结合特殊值验证,通过排除法求得结果.【详解】对于选项B, 为 奇函数可判断B错误;对于选项C,当时, ,可判断C错误;对于选项D, ,可知函数在第一象限的图象无增区间,故D错误;故选:A.【点睛】本题考查已知函数的图象判断解析
11、式问题,通过函数性质及特殊值利用排除法是解决本题的关键,难度一般.10A【解析】求出满足条件的正的面积,再求出满足条件的正内的点到顶点、的距离均不小于的图形的面积,然后代入几何概型的概率公式即可得到答案【详解】满足条件的正如下图所示:其中正的面积为,满足到正的顶点、的距离均不小于的图形平面区域如图中阴影部分所示,阴影部分区域的面积为.则使取到的点到三个顶点、的距离都大于的概率是.故选:A.【点睛】本题考查几何概型概率公式、三角形的面积公式、扇形的面积公式的应用,考查计算能力,属于中等题11D【解析】模拟程序运行,观察变量值的变化,得出的变化以4为周期出现,由此可得结论【详解】;如此循环下去,当
12、时,此时不满足,循环结束,输出的值是4.故选:D【点睛】本题考查程序框图,考查循环结构解题时模拟程序运行,观察变量值的变化,确定程序功能,可得结论12B【解析】根据焦点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.二、填空题:本题共4小题,每小题5分,共20分。13【解析】试题分析:从编号分别为1,1,3,4,5的5个红球和5个黑球,从中随机取出4个,有种不同的结果,由
13、于是随机取出的,所以每个结果出现的可能性是相等的;设事件为“取出球的编号互不相同”,则事件包含了个基本事件,所以.考点:1.计数原理;1古典概型.14【解析】当时,转化条件得有唯一实数根,令,通过求导得到的单调性后数形结合即可得解.【详解】当时,故不是函数的零点;当时,即,令,当时,;当时,的单调减区间为,增区间为,又 ,可作出的草图,如图:则要使有唯一实数根,则.故答案为:.【点睛】本题考查了导数的应用,考查了转化化归思想和数形结合思想,属于难题.15【解析】由于点在椭圆上运动时,与轴的正方向的夹角在变,所以先设,又由,可知,从而可得,而点在椭圆上,所以将点的坐标代入椭圆方程中化简可得结果【
14、详解】设,则,由,得,代入椭圆方程,得,化简得恒成立,由此得,即,故故答案为:【点睛】此题考查的是利用椭圆中相关两个点的关系求离心率,综合性强,属于难题 16【解析】设,可表示出,由三棱锥性质得这三条棱长的平方和等于外接球直径的平方,从而半径的最小值,得外接球表面积【详解】设则,由两两垂直知三棱锥的三条棱的棱长的平方和等于其外接球的直径的平方记外接球半径为,当时,故答案为:【点睛】本题考查三棱锥外接球表面积,解题关键是掌握三棱锥的性质:三条侧棱两两垂直的三棱锥的外接球的直径的平方等于这三条侧棱的平方和三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)2【解析】(1
15、)首先利用对圆C的参数方程(为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,得;设,则由解得,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.18(1);(2)【解析】(1)分析可得必在椭圆上,不在椭圆上,代入即得解;(2)设直线PA,PB的倾斜角分别为,斜率为,可得.则,利用均值不等式,即得解
16、.【详解】(1)因为关于轴对称,所以必在椭圆上,不在椭圆上,即.(2)设椭圆上的点(),设直线PA,PB的倾斜角分别为,斜率为又.,(不妨设).故 当且仅当,即时等号成立【点睛】本题考查了直线和椭圆综合,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.19(1),.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析【解析】(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与
17、期望.【详解】解:(1)由频率分布直方图可知,因为构成以2为公比的等比数列,所以,解得,所以,.故,.(2)获奖的人数为人,因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.于是可以得到列联表如下:文科生理科生合计获奖61420不获奖74306380合计80320400所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.(3)由(2)可知,获奖的概率为,的可能取值为0,1,2,分布列如下:012数学期望为.【点睛】本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题20(1);(2)【解析】试题分析:(1)当时;(2)由等价于,解之得.试题解析: (1)当时,.解不等式,得.因此,的解集为.(2)当时,当时等号成立,所以当时,等价于. 当时,等价于,无解.当时,等价于,解得.所以的取值范围是.考点:不等式选讲.21见解析【解析】已知条件,需要证明的是,要想利用柯西不等式,需要的值,发现,则可以用柯西不等式.【详解】,.由柯西不等式得,.【点睛】本题考查柯西不等式的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025无偿保管合同协议书
- 2025年冷热箱项目可行性研究报告
- 集中喷涂可行性研究报告
- LED灯饰项目投资建设报告
- 护患沟通技巧课件
- 机制炭生产可行性方案
- 2025关于柜台租赁合同样式参考
- 2021-2026年中国网版市场供需现状及投资战略研究报告
- 2022-2027年中国风衣行业发展监测及投资战略咨询报告
- 《故都的秋》2024年课件抢先看2篇
- 地震监测系统运维方案、重点难点分析及应对措施
- 三级配电箱巡检记录
- 《全国统一安装工程预算定额》工程量计算规则
- 露天矿安全操作规程汇编
- 胎膜早破的护理PPT
- (新版)北师大版五年级数学上册期末试卷
- 小班《火车开了》音乐欣赏课评课稿
- 伦理学与医学伦理学 (医学伦理学课件)
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GA/T 798-2008排油烟气防火止回阀
- GA/T 1740.1-2020旅游景区安全防范要求第1部分:山岳型
评论
0/150
提交评论