




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,则该几何体的体积为( )AB3CD42已知,满足约束条件,则的最大值为ABCD3已知,且,则在方向上的投影为( )ABCD4在等差数列中,若(),则数列的最大值是( )ABC1D35已知双曲线的一个焦点为,且与双曲线的
2、渐近线相同,则双曲线的标准方程为( )ABCD6某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A月收入的极差为60B7月份的利润最大C这12个月利润的中位数与众数均为30D这一年的总利润超过400万元7已知满足,则( )ABCD8已知集合,若,则( )A或B或C或D或9已知平面向量,满足:,则的最小值为( )A5B6C7D810如图,平面四边形中,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )ABCD11若向量,则与共线的向量可以是()ABCD12在正方体中,E是棱的中点,F是侧面内的动点,且与平面的垂线垂直,如图所示,下列
3、说法不正确的是( )A点F的轨迹是一条线段B与BE是异面直线C与不可能平行D三棱锥的体积为定值二、填空题:本题共4小题,每小题5分,共20分。13已知,则=_,_14若展开式中的常数项为240,则实数的值为_.15从甲、乙、丙、丁、戊五人中任选两名代表,甲被选中的概率为_.16设,则除以的余数是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(1)求不等式的解集;(2)若函数的定义域为,求实数 的取值范围18(12分)已知抛物线,直线与交于,两点,且.(1)求的值;(2)如图,过原点的直线与抛物线交于点,与直线交于点,过点作轴的垂线交抛物线于点,证明:直
4、线过定点.19(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围20(12分)已知函数.(1)若函数在上单调递减,求实数的取值范围;(2)若,求的最大值.21(12分)的内角的对边分别为,且.(1)求;(2)若,点为边的中点,且,求的面积.22(10分)已知椭圆的上顶点为,圆与轴的正半轴交于点,与有且仅有两个交点且都在轴上,(为坐标原点).(1)求椭圆的方程;(2)已知点,不过点且斜率为的直线与椭圆交于两点,证明:直线与直线的斜率互为相反数.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】首先
5、把三视图转换为几何体,该几何体为由一个三棱柱体,切去一个三棱锥体,由柱体、椎体的体积公式进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为几何体为:该几何体为由一个三棱柱体,切去一个三棱锥体,如图所示:故:.故选:C.【点睛】本题考查了由三视图求几何体的体积、需熟记柱体、椎体的体积公式,考查了空间想象能力,属于基础题.2D【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论【详解】作出不等式组表示的平面区域如下图中阴影部分所示,等价于,作直线,向上平移,易知当直线经过点时最大,所以,故选D【点睛】本题主要考查线性规划的应用,利用目标函数的几何意义,结合
6、数形结合的数学思想是解决此类问题的基本方法3C【解析】由向量垂直的向量表示求出,再由投影的定义计算【详解】由可得,因为,所以故在方向上的投影为故选:C【点睛】本题考查向量的数量积与投影掌握向量垂直与数量积的关系是解题关键4D【解析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调性研究数列最值问题,难度较易.5B【解析】根据焦
7、点所在坐标轴和渐近线方程设出双曲线的标准方程,结合焦点坐标求解.【详解】双曲线与的渐近线相同,且焦点在轴上,可设双曲线的方程为,一个焦点为,故的标准方程为.故选:B【点睛】此题考查根据双曲线的渐近线和焦点求解双曲线的标准方程,易错点在于漏掉考虑焦点所在坐标轴导致方程形式出错.6D【解析】直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题
8、考查了折线图,意在考查学生的理解能力和应用能力.7A【解析】利用两角和与差的余弦公式展开计算可得结果.【详解】,.故选:A.【点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.8B【解析】因为,所以,所以或.若,则,满足.若,解得或.若,则,满足.若,显然不成立,综上或,选B.9B【解析】建立平面直角坐标系,将已知条件转化为所设未知量的关系式,再将的最小值转化为用该关系式表达的算式,利用基本不等式求得最小值.【详解】建立平面直角坐标系如下图所示,设,且,由于,所以.所以,即.当且仅当时取得最小值,此时由得,当时,有最小值为,即,解得.所以当且仅当时有最小值为.故
9、选:B【点睛】本小题主要考查向量的位置关系、向量的模,考查基本不等式的运用,考查数形结合的数学思想方法,属于难题.10C【解析】由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知又因为,则面,于是,因此三棱锥外接球球心是的中点计算可知,则外接球半径为1,从而外接球表面积为故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题11B【解析】先利用向量坐标运算求出向量,然后利用向量平行的条件判断即可.【详解】故选B【点睛】
10、本题考查向量的坐标运算和向量平行的判定,属于基础题,在解题中要注意横坐标与横坐标对应,纵坐标与纵坐标对应,切不可错位.12C【解析】分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断【详解】对于,设平面与直线交于点,连接、,则为的中点分别取、的中点、,连接、, ,平面,平面,平面同理可得平面,、是平面内的相交直线平面平面,由此结合平面,可得直线平面,即点是线段上上的动点正确对于,平面平面,和平面相交,与是异面直线,正确对于,由知,平面平面,与不可能平行,错误对于,因为,则到平面的距离是定值,三棱锥的体积为定值,所以正确;故选:【点睛】本题考查了正方形的性质、空间位置关系、空间角
11、、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13196 3 【解析】由二项式定理及二项式展开式通项得:,令x=1,则1+a0+a1+a7=(1+1)(1-2)7=-2,所以a0+a1+a7=-3,得解【详解】由二项式(12x)7展开式的通项得,则,令x=1,则,所以a0+a1+a7=3,故答案为:196,3.【点睛】本题考查二项式定理及其通项,属于中等题.143【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题
12、.15【解析】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法,从甲、乙、丙、丁、戊五人中任选两名共有种方法,根据公式即可求得概率.【详解】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法, 从甲、乙、丙、丁、戊五人中任选两名共有种方法,.故答案为:.【点睛】本题考查古典概型的概率的计算,考查学生分析问题的能力,难度容易.161【解析】利用二项式定理得到,将89写成1+88,然后再利用二项式定理展开即可.【详解】,因展开式中后面10项均有88这个因式,所以除以的余数为1.故答案为:1【点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析
13、,本题是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2) 【解析】(1)分类讨论,去掉绝对值,化为与之等价的三个不等式组,求得每个不等式组的解集,再取并集即可(2)要使函数的定义域为R,只要的最小值大于0即可,根据绝对值不等式的性质求得最小值即可得到答案【详解】(1)不等式或或,解得或,即x0,所以原不等式的解集为(2)要使函数的定义域为R,只要的最小值大于0即可,又,当且仅当时取等,只需最小值,即所以实数a的取值范围是【点睛】本题考查绝对值不等式的解法,考查利用绝对值三角不等式求最值,属基础题18(1);(2)见解析【解析】(1)联立直线和抛物线
14、,消去可得,求出,再代入弦长公式计算即可.(2)由(1)可得,设,计算直线的方程为,代入求出,即可求出,再代入抛物线方程,求出,最后计算直线的斜率,求出直线的方程,化简可得到恒过的定点.【详解】(1)由,消去可得,设,则,.,解得或(舍去),.(2)证明:由(1)可得,设,所以直线的方程为,当时,则,代入抛物线方程,可得,所以直线的斜率,直线的方程为,整理可得,故直线过定点.【点睛】本题第一问考查直线与抛物线相交的弦长问题,需熟记弦长公式.第二问考查直线方程和直线恒过定点问题,需有较强的计算能力,属于难题.19(1).(2).【解析】试题分析:()通过讨论x的范围,得到关于x的不等式组,解出取
15、并集即可;()求出f(x)的最大值,得到关于a的不等式,解出即可试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),解得实数的取值范围是点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向20(1)(2)【解析】(1)根据单调递减可知导函数恒小于等于,采用参变分离的方法分离出,并将的部分构造成新函数,分析与最值之间的关系;(2)通过对的导函数分析,确定有唯一零点,则就是的
16、极大值点也是最大值点,计算的值并利用进行化简,从而确定.【详解】(1)由题意知, 在上恒成立,所以在上恒成立.令,则,所以在上单调递增,所以,所以.(2)当时,.则,令,则,所以在上单调递减.由于,所以存在满足,即.当时,;当时,.所以在上单调递增,在上单调递减.所以,因为,所以,所以,所以.【点睛】(1)求函数中字母的范围时,常用的方法有两种:参变分离法、分类讨论法;(2)当导函数不易求零点时,需要将导函数中某些部分拿出作单独分析,以便先确定导函数的单调性从而确定导函数的零点所在区间,再分析整个函数的单调性,最后确定出函数的最值.21(1);(2).【解析】(1)利用正弦定理边化角,再利用余弦定理求解即可.(2) 为为的中线,所以再平方后利用向量的数量积公式进行求解,再代入可解得,再代入面积公式求解即可.【详解】(1)由,可得,由余弦定理可得,故.(2)因为为的中线,所以,两边同时平方可得,故.因为,所以.所以的面积.【点睛】本题主要考查了利用正余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 营山县农村道路管理办法
- 蓟州区公司注册管理办法
- 蚌埠市在建工程管理办法
- 行政部管理目标管理办法
- 西红柿公司职工管理办法
- 衢江区渔业养殖管理办法
- 西南大学教研室管理办法
- 西藏公积金缴纳管理办法
- 试验检测部考核管理办法
- 财务部财务管理暂行办法
- 《病毒学》(研究生)全册配套完整课件
- 第十七章其他熔化焊接与热切割作业课件
- 手术讲解模板:肩关节全部置换术课件
- 腧穴总论 2特定穴课件
- 数显压力表说明书
- 食堂伙食收据样稿
- JJF 1255-2010 厚度表校准规范-(高清现行)
- DB4409∕T 06-2019 地理标志产品 化橘红
- 拉森钢板桩引孔方案说明
- 路基工程质量通病及防治措施
- 咖啡文化PPT课件:咖啡配方及制作方法步骤
评论
0/150
提交评论