河南省信阳罗山县联考2021-2022学年中考试题猜想数学试卷含解析_第1页
河南省信阳罗山县联考2021-2022学年中考试题猜想数学试卷含解析_第2页
河南省信阳罗山县联考2021-2022学年中考试题猜想数学试卷含解析_第3页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列说法:平分弦的直径垂直于弦;在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;各角相等的圆外切多边形一定是正多

2、边形;各角相等的圆内接多边形一定是正多边形;若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是其中正确的个数()A1B2C3D42若M(2,2)和N(b,1n2)是反比例函数y=的图象上的两个点,则一次函数y=kx+b的图象经过()A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限3有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOC

3、DODBC4下列方程中是一元二次方程的是()ABCD5将抛物线y=x26x+21向左平移2个单位后,得到新抛物线的解析式为()Ay=(x8)2+5By=(x4)2+5Cy=(x8)2+3Dy=(x4)2+36如图,在O中,直径AB弦CD,垂足为M,则下列结论一定正确的是( )AAC=CDBOM=BMCA=ACDDA=BOD7如果关于的不等式组的整数解仅有、,那么适合这个不等式组的整数、组成的有序数对共有()A个B个C个D个8如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是()ABCD9如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()ABCD10如果一个扇形的弧长等

4、于它的半径,那么此扇形称为“等边扇形”将半径为5的“等边扇形”围成一个圆锥,则圆锥的侧面积为()ABC50D50二、填空题(共7小题,每小题3分,满分21分)11如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米12菱形ABCD中,其周长为32,则菱形面积为_.13如图,在菱形ABCD中,于E,则菱形ABCD的面积是_14将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若ABE20,则DBC为_度15(11湖州)如图,已知A、B是反比例函数(k0,x0)图象上的两点,BCx轴,交y轴于点C动点P从坐标原点O出发,沿OABC(图中“”所示

5、路线)匀速运动,终点为C过P作PMx轴,PNy轴,垂足分别为M、N设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为16如图,抛物线交轴于,两点,交轴于点,点关于抛物线的对称轴的对称点为,点,分别在轴和轴上,则四边形周长的最小值为_17如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将ABP沿BP翻折至EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为_三、解答题(共7小题,满分69分)18(10分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证

6、明勾股定理,过程如下如图(1)DAB=90,求证:a2+b2=c2证明:连接DB,过点D作DFBC交BC的延长线于点F,则DF=b-aS四边形ADCB= S四边形ADCB=化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中DAB=90,求证:a2+b2=c219(5分)甲、乙两公司各为“希望工程”捐款2000元已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?20(8分)如图,在ABC中,AB=AC,ABC=72(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在

7、(1)中作出ABC的平分线BD后,求BDC的度数21(10分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径22(10分)如图,在ABC中,CDAB于点D,tanA2cosBCD,(1)求证:BC2AD;(2)若cosB,AB10,求CD的长.23(12分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22时,教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在

8、一条直线上)求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数)24(14分)如图,已知抛物线yax2+bx+1经过A(1,0),B(1,1)两点(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:yk1x+b1(k1,b1为常数,且k10),直线l2:yk2x+b2(k2,b2为常数,且k20),若l1l2,则k1k21解决问题:若直线y2x1与直线ymx+2互相垂直,则m的值是_;抛物线上是否存在点P,使得PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的

9、上方(不与A,B重合),求点M到直线AB的距离的最大值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得【详解】平分弦(不是直径)的直径垂直于弦,故此结论错误;在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;各角相等的圆外切多边形是正多边形,此结论正确;各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;若一个事件可能发生的结果共有n种,再每种结果发生的可能性相

10、同是,每一种结果发生的可能性是故此结论错误;故选:A【点睛】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义2、C【解析】把(2,2)代入得k=4,把(b,1n2)代入得,k=b(1n2),即根据k、b的值确定一次函数y=kx+b的图象经过的象限【详解】解:把(2,2)代入,得k=4,把(b,1n2)代入得:k=b(1n2),即,k=40,0,一次函数y=kx+b的图象经过第一、三、四象限,故选C【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k,b的符号是解题关键3、B【解析】【

11、分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.4、C【解析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、

12、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键5、D【解析】直接利用配方法将原式变形,进而利用平移规律得出答案【详解】y=x26x+21=(x212x)+21=(x6)216+21=(x6)2+1,故y=(x6)2+1,向左平移2个单位后,得到新抛物线的解析式为:y=(x4)2+1故选D【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键6、D【解析】根据垂径定理判断即可【详解】连接DA直径AB弦CD,垂足为M,CM=

13、MD,CAB=DAB2DAB=BOD,CAD=BOD故选D【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键7、D【解析】求出不等式组的解集,根据已知求出12、34,求出2a4、9b12,即可得出答案【详解】解不等式2xa0,得:x,解不等式3xb0,得:x,不等式组的整数解仅有x2、x3,则12、34,解得:2a4、9b12,则a3时,b9、10、11;当a4时,b9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D【点睛】本题考查了解一元一次不等式组,不等式组的整数解

14、,有序实数对的应用,解此题的根据是求出a、b的值8、C【解析】分析:估计的大小,进而在数轴上找到相应的位置,即可得到答案.详解:由被开方数越大算术平方根越大,即故选C.点睛:考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估计的大小.9、D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.10、A【解析】根据新定义得到扇形的弧长为5,然后根据扇形的面积公式求解【详解】解:圆锥的侧面积=55=故选A【点睛】本题考查圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长二、填空题(共7小题,每小题3分,

15、满分21分)11、6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.12、【解析】分析:根据菱形的性质易得AB=BC=CD=DA=8,ACBD, OA=OC,OB=OD,再判定ABD为等边三角形,根据等边三角形的性质可得AB=BD=8,从而得OB=4,在RtAOB中,根据勾股定理可得OA=4,继而求得AC=2AO=,再由菱形的面积公式即可求得菱形ABCD的面积.详解:菱形ABCD中,其周长为32,AB=BC=CD=DA=8,ACBD, OA=OC,OB=

16、OD,ABD为等边三角形,AB=BD=8,OB=4,在RtAOB中,OB=4,AB=8,根据勾股定理可得OA=4,AC=2AO=,菱形ABCD的面积为:=.点睛:本题考查了菱形性质:1.菱形的四个边都相等;2.菱形对角线相互垂直平分,并且每一组对角线平分一组对角;3.菱形面积公式=对角线乘积的一半.13、【解析】根据题意可求AD的长度,即可得CD的长度,根据菱形ABCD的面积=CDAE,可求菱形ABCD的面积【详解】sinD= AD=11四边形ABCD是菱形AD=CD=11菱形ABCD的面积=118=96cm1故答案为:96cm1【点睛】本题考查了菱形的性质,解直角三角形,熟练运用菱形性质解决

17、问题是本题的关键14、1【解析】解:根据翻折的性质可知,ABE=ABE,DBC=DBC又ABE+ABE+DBC+DBC=180,ABE+DBC=90又ABE=20,DBC=1故答案为1点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出ABE=ABE,DBC=DBC是解题的关键15、A【解析】试题分析:当点P在OA上运动时,OP=t,S=OMPM=tcostsin,角度固定,因此S是以y轴为对称轴的二次函数,开口向上;当点P在AB上运动时,设P点坐标为(x,y),则S=xy=k,为定值,故B、D选项错误;当点P在BC上运动时,S随t的增大而逐渐

18、减小,故C选项错误故选A考点:1.反比例函数综合题;2.动点问题的函数图象16、【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D(1,4)、作点E关于x轴的对称点E(2,3),从而得到四边形EDFG的周长DEDFFGGEDEDFFGGE,当点D、F、G、E四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在yx22x3中,当x0时,y3,即点C(0,3),yx22x3(x1)24,对称轴为x1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D(1,4),作点E关于x轴的对称点E(2,3),连结D、E,DE与

19、x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长DEDFFGGEDEDFFGGEDEDE 四边形EDFG周长的最小值是.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.17、4.1【解析】解:如图所示:四边形ABCD是矩形,D=A=C=90,AD=BC=6,CD=AB=1,根据题意得:ABPEBP,EP=AP,E=A=90,BE=AB=1,在ODP和OEG中,ODPOEG(ASA),OP=OG,PD=GE,DG=EP,设AP=EP=x,则PD=GE=6x,DG=x,CG=1x,BG=1(6x)=2

20、+x,根据勾股定理得:BC2+CG2=BG2,即62+(1x)2=(x+2)2,解得:x=4.1,AP=4.1;故答案为4.1三、解答题(共7小题,满分69分)18、见解析.【解析】首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证【详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,S五边形ACBED=SACB+SABE+SADE=ab+b1+ab,又S五边形ACBED=SACB+SABD+SBDE=ab+c1+a(b-a),ab+b1+ab=ab+c1+a(b-a),a1+b1=c1【点睛】此题考查了勾股定理的证明,用两种方

21、法表示出五边形ACBED的面积是解本题的关键19、甲、乙两公司人均捐款分别为80元、100元【解析】试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.试题解析:设甲公司人均捐款x元 解得: 经检验,为原方程的根, 80+20=100答:甲、乙两公司人均各捐款为80元、100元20、(1)作图见解析(2)BDC=72【解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72,A=1802ABC=180144=36AD是ABC的平分线,ABD=ABC=72=36BDC是ABD的外角,BDC=A+ABD=36+36=72(1)根据角平分线的作法利用直尺和圆规

22、作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性质得出ABD的度数,再根据三角形外角的性质得出BDC的度数即可21、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH

23、是O的切线,ODH=DHA=90,ODH=DHA=90,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.22、(1)证明见解析;(2)CD2.【解析】(1)根据三角函数的概念可知tanA,cosBCD,根据tanA2cosBCD即可得结论;(2)由B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可【详解】(1)tanA,cosBCD,tanA2cosBCD,2,BC2AD.(2)cosB,BC2AD,.AB10,AD104,BD1046,BC8,CD2.【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.23、(1)2m(2)27m【解析】(1)首先构造直角三角形AEM,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论