2018中考数学复习第13课时二次函数的图像与性质测试_第1页
2018中考数学复习第13课时二次函数的图像与性质测试_第2页
2018中考数学复习第13课时二次函数的图像与性质测试_第3页
2018中考数学复习第13课时二次函数的图像与性质测试_第4页
2018中考数学复习第13课时二次函数的图像与性质测试_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三单元函数第十三课时二次函数的图像与性质基础达标训练1.(2017哈尔滨)抛物线y3x12的极点坐标是()()3521111A.(2,3)B.(2,3)C.(2,3)D.(2,3)2.(2017金华)关于二次函数y(x1)22的图象与性质,以下说法正确的选项是()A.对称轴是直线x1,最小值是2B.对称轴是直线x1,最大值是2对称轴是直线x1,最小值是2对称轴是直线x1,最大值是2第3题图3.(2017长沙中考模拟卷五)如图,抛物线yax2bxc(a0)的对称轴是直线x1,且经过点P(3,0),则abc的值为()A.0B.1C.1D.2(2017连云港)已知抛物线yax2(a0)过A(2,y

2、1),B(1,y2)两点,则以下关系式一定正确的选项是()A.y10y2B.y20y11C.y1y20D.y2y10第5题图5.(2017六盘水)已知二次函数yax2bxc的图象以下列图,则()b0,c0b0,c0b0,c0b06.将抛物线y3x23向右平移3个单位长度,获取新抛物线的表达式为()A.y3(x3)23B.y3x2C.y3(x3)23D.y3x26227.(2017宁波)抛物线yx2xm2(m是常数)的极点在()A.第一象限B.第二象限C.第二象限D.第三象限第8题图8.(2017鄂州)已知二次函数y()2n的图象以下列图,则一次函数yn与反xmmxmn比率函数yx的图象可能是(

3、)29.(2017随州)关于二次函数yx22mx3,以下结论错误的选项是()A.它的图象与x轴有两个交点方程x22mx3的两根之积为3它的图象的对称轴在y轴的右侧xm时,y随x的增大而减小10.(2017徐州)若函数y22b的图象与坐标轴有三个交点,则b的取值范围是xx()A.b1C.0b1D.b0)的图象是()(2017长沙中考模拟卷六)已知二次函数yax2bxc(a0)的图象以下列图,第14题图现有以下结论:b24ac0;abc0;c8;9a3bcax2bxc的解集是_23.(2017鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线5y(x1)2

4、向下平移m个单位(m0)与正方形ABCD的边(包括四个极点)有交点,则m的取值范围是_24.(6分)设二次函数y2pxq的图象经过点(2,1),且与x轴交于不同样的两点(1,xAx0),B(x2,0),M为二次函数图象的极点,求使AMB的面积最小时的二次函数的剖析式25.(8分)(2017云南)已知二次函数y2x2bxc图象的极点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点不等式b2c80可否成立?请说明原由;设S是AMO的面积,求满足S9的所有点M的坐标26.(8分)(2017北京)在平面直角坐标系O中,抛物线yx24x3与x轴交于点,xyA

5、B(点A在点B的左侧),与y轴交于点C.求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3)若x1x2x3,结合函数的图象,求x1x2x3的取值范围27.(9分)(2017荆州)已知关于x的一元二次方程x2(k5)x1k0,其中k为常数求证:无论k为何值,方程总有两个不相等实数根;(2)已知函数yx2(k5)x1k的图象不经过第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值28.(9分)(2017郴州)设a、b是任意两个实数,用maxa,b表示a、b两数中较大者例如:max1,11

6、,max1,22,max(4,3)4.参照上面的资料,解答以下问题:max5,2_,max0,3_;若max3x1,x1x1,求x的取值范围;(3)求函数yx224与yx2的图象的交点坐标函数yx22x4的图象如图x所示,请你在图中作出函数yx2的图象,并依照图象直接写出2,x22maxxx4的最小值6第28题图能力提升训练(2017天津)已知抛物线yx24x3与x轴订交于点A,B(点A在点B左侧),极点为,平移该抛物线,使点平移后的对应点落在x轴上,点B平移后的对应点B落在MMMy轴上,则平移后的抛物线剖析式为()yx22x1B.yx22x1C.yx22x1D.yx22x1第2题图2.(20

7、17扬州)如图,已知ABC的极点坐标分别为A(0,2)、B(1,0)、C(2,1),若二次函数yx2bx1的图象与阴影部分(含界线)必然有公共点,则实数b的取值范围是()b2B.b23.(2017长沙中考模拟卷二)已知二次函数yax2bx(0)经过点(1,2)和点(1,caMN2),交x轴于点,交y轴于点.现有以下四个结论:b2;该二次函数图ABC象与y轴交于负半轴;存在实数a,使得M,A,C三点在同一条直线上;若a1,则2()OAOBOC.其中,正确的结论有7A.B.C.D.(2017武汉)已知关于x的二次函数yax2(a21)xa的图象与x轴的一个交点的坐标为(m,0),若2m0,20,且

8、y120.yy第4题解图5.B【剖析】图象张口向下,a0,对称轴xbb在y轴右侧,0,2a2a8b0,又图象与y轴的交点在x轴下方,c0.6.A【剖析】由函数图象左右平移的规律依照“左加右减”可知:当y3x23的图象向右平移3个单位时,获取新抛物线的表达式为y3(x3)23.7.A【剖析】对称轴xb1,代入表达式可得y21,极点坐标为(1,21),2amm22m0,m11,极点坐标在第一象限8.C【剖析】二次函数y(xm)2n的极点在第二象限,m0,m0,mnn0,mn0,解得b1,又图象与y轴有一个交点,b0,综上,b的取值范围是b1且b0.11.B【剖析】一次函数y(1a的图象过第一、三、

9、四象限,a10,解a0得10,二次函数yax2(1)21,又10,二次函数yaaxax24aa921axax有最大值,且最大值为4a.12.C【剖析】由表格可知当x1.2时,y的值最凑近0,x2350的一个近似x根是1.2.D【剖析】在抛物线yx23中,令y0,解得x3,令x0,则y3,抛物线与x轴围成封闭地域(界线除外)内的整点有:(1,1),(1,1),(0,1),(0,42),共4个,k4,反比率函数剖析式为yx,其图象经过点(1,4),(2,2),(4,应选D.14.D【剖析】观察图象可知,函数与x轴有两个交点,b24ac0,故项正确;b函数图象张口向上,与y轴交于负半轴,a0,c0,

10、对称轴2a1,b0,abc0,故正确;由可得对称轴2ab1,b2a,可将抛物线的剖析式化为yax22axc(a0),由函数图象知:当x2时,y0,即4a(4a)c8ac0,即ca8,故正确;由二次函数的对称性可知,当x3和x1时,y的值相等,观察图象可知,当x1时,y0,当x3时,y0,则9a3bc0,故项正确,综上所述,正确结论为,共4个15.A【剖析】二次函数yax21的图象经过点(2,0),代入得(2)2a10,1121216.D【剖析】二次函数的对称轴为x,对称轴不确定,需分情况谈论当2mm时,此时1x2落在对称轴的左侧,当x2时,y获取最小值2,即2222m2,1032解得m2(舍)

11、;当1m2时,此时在对称轴xm处获取最小值2,即2m2mm,解得m2或m2,又1m0,极点坐标为(0,xa1),可设二次函数剖析式为yax21,即yx21(答案不唯一)18.y3(x4)(x2)【剖析】设抛物线剖析式为y(4)(x2),把(0,3)代8axC33入上式得3a(04)(02),解得a8,故y8(x4)(x2)1,5【剖析】yx22x6(x22x1)5(x1)25,当x1时,yx22x6有最小值,且最小值为5.20.(2,0)【剖析】抛物线上点P和点关于1对称,P(4,0),可设(,0),QxQmm421,解得m2,Q(2,0)21.m9【剖析】抛物线yx26xm与x轴没有交点,方

12、程x26xm0无实数解,即b24ac(6)24m9.22.x4【剖析】观察题图,当直线在抛物线之上时,即mxnax2bxc,(1,),(4,),关于x的不等式的解集为x4.ApBq23.28【剖析】将抛物线y(x1)2向下平移m个单位,获取抛物线y(mx1)2m,由平移后抛物线与正方形ABCD的边有交点,则当点B在抛物线上时,m取最小值,此时(11)2m2,解得m2,当点D在抛物线上时,m取最大值,此时(21)2m1,11解得m8,综上所述,m的取值范围是2m8.解:二次函数yx2pxq经过点(2,1),代入得1222pq,即2pq5,x1,x2为x2pxq0两根,x1x2p,x1x2q,22

13、4q,ABxx(xx)4xxp121212p4qp2极点M(2,4),14qp2124qp2121|42123,SAMB|AB|4|2p4q|4|(p4q)2qp|(p4q)2288当p24q最小时,SAMB有最小值,p24qp28p20(p4)24,当p4时,p24q取最小值4,此时q3,故所求的二次函数剖析式为yx24x3.解:(1)不等式b2c80成立原由以下:二次函数y2x2bxc图象的极点坐标为(3,8),b2(2)3,4(2)cb28,4(2)b12解得,c10b2c80,不等式b2c80成立;由(1)知,b12,c10,代入得y2x212x10,12由已知得点A的坐标为(3,0)

14、,设M(x,2x212x10),12当点M在x轴上方时,S3(2x12x10)9,解得x12或x24;12当点M在x轴下方时,S3(2x12x10)9,解得x37或x37,34满足S9的所有点M的坐标为(2,6),(4,6),(37,6),(37,6)解:(1)抛物线yx24x3与x轴交于点A,B(点A在点B左侧),令y0,则有x24x3(x3)(x1)0,解得x11,x23,A(1,0),B(3,0),抛物线yx24x3与y轴交于点C,令x0,得y3,C(0,3),设直线BC的表达式为ykxb(k0),将B(3,0),C(0,3)代入ykxb,得3kb0k1,解得,b3b3直线BC的表达式为

15、yx3;yx24x3(x2)21,抛物线对称轴为x2,极点为(2,1),ly轴,l交抛物线于点、,交于点,123,PQBCNxxx1y1y2y30,点P、Q关于x2对称,1330,x1x22,x2133x34,x1x24,7x1x2x30,无论k为何值,方程总有两个不相等的实数根;二次函数图象不经过第三象限,5k对称轴x20且不与y轴负半轴订交,即1k0,5k0联立得2,解得k1;1k0依题意得,关于yx2(k5)x1k,x3时,y0,y323(k5)1k0,5即2k50,k1,抛物线与ABC不订交;当b2时,对称轴x1,抛物线与ABC订交,综上所述,b2.第2题解图3.C【剖析】二次函数ya

16、x2bxc(a0)经过点M(1,2)和点N(1,2),152abcyax2bxc,a0,该二次函,解得b2,故正确;二次函数2abc数图象张口向上,点(1,2)和点(1,2),直线的剖析式为y2,当1MNMNxx1时,二次函数图象在y2x的下方,该二次函数图象与y轴交于负半轴,故正确;依照抛物线图象的特点,M、A、C三点不能能在同一条直线上,故错误;当a1时,c1,该抛物线的剖析式为yx22x1,当y0时,0 x22xc,利用根与系数的关系可得x2xcOAOBcxycOCcOC12若1,则2OC,故正确综上所述,正确的结论有.aOAOB113a2或3a2【剖析】令y0,即ax2(a21)xa0,(ax1)(xa)0,关于x的二次函数221)1yax(axa的图象与x轴的交点为(,0)和(a,0),即ma111a或ma,又2m3,则3a2或3a2.解:(1)抛物线yx2bx3经过点A(1,0),01b3,解得b2,抛物线的剖析式为yx223(1)24,xx极点坐标为(1,4);22(2)由点P(m,t)在抛物线yx2x3上,得tm2m3,又点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论