




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、例谈“放缩法”证明不等式的基本策略江苏省苏州市木渎第二高级中学 母建军 215101近年来在高考解答题中,常渗透不等式证明的内容,而不等式的证明是高中数学中的一个难点,它可以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一提的是,高考中可以用“放缩法”证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点, 有极大的迁移性, 对它的运用往往能体现出创造性。“放缩法”它可以和很多知识内容结合,对应变能力有较高的要求。因为放缩必须有目标,而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度,否则就不能同向传递。下面结合一些高考试题,例谈“放缩”的基本策略,期望对读者能有所
2、帮助。1、添加或或舍弃一一些正项项(或负项项)例1、已已知求证证:证明: 若多项式中中加上一一些正的的值,多多项式的的值变大大,多项项式中加加上一些些负的值值,多项项式的值值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了,从而是使和式得到化简.2、先放缩缩再求和和(或先求求和再放放缩)例2、函数数f(x)=,求证:f(1)+f(2)+f(n)n+.证明:由ff(n)= =1-得f(1)+f(2)+f(n).此题不等式式左边不不易求和和,此时时根据不不等式右右边特征征, 先将分分子变为为常数,再再对分母母进行
3、放放缩,从从而对左左边可以以进行求求和. 若分子, 分母如如果同时时存在变变量时, 要设设法使其其中之一一变为常常量,分分式的放放缩对于于分子分分母均取取正值的的分式。如如需放大大,则只只要把分分子放大大或分母母缩小即即可;如如需缩小小,则只只要把分分子缩小小或分母母放大即即可。3、先放缩缩,后裂裂项(或或先裂项再放放缩)例3、已知知an=n ,求证: eq o(,ssupp5(nn),sddo5(k=1) eq f( eq r(k) , eq ao(2,k) ) 3证明: eq o(,sup55(n),sddo5(k=1) = eq o(,ssupp5(nn),sddo5(k=1) 1 eq
4、 o(,ssupp5(nn),sddo5(k=2) eq f(1, eq r(k1)k(k1) ) eq o(,sup55(n),sddo5(k=2) eq f(2, eq r(k1)(k1) ( eq r(k1) eq r(k1) ) =1 eq o(,ssupp5(nn),sddo5(k=2) ( eq f(1, eq r(k1) ) eq f(1, eq r(k1) ) ) =11 eq f(1, eq r(n1) ) 23本题先采用用减小分分母的两两次放缩缩,再裂项,最最后又放放缩,有有的放矢矢,直达达目标.4、放大或或缩小“因式”;例4、已知知数列满满足求证证:证明 本题通过对对因式
5、放放大,而而得到一一个容易易求和的的式子,最最终得出出证明.5、逐项放放大或缩缩小例5、设求求证: 证明: , 本题利用,对对中每项项都进行行了放缩缩,从而而得到可可以求和和的数列列,达到到化简的的目的。6、固定一一部分项项,放缩缩另外的的项;例6、求证证:证明:此题采用了了从第三三项开始始拆项放放缩的技技巧,放放缩拆项项时,不不一定从从第一项项开始,须须根据具具体题型型分别对对待,即即不能放放的太宽宽,也不不能缩的的太窄,真真正做到到恰倒好好处。7、利用基基本不等等式放缩缩例7、已知知,证明明:不等等式对任任何正整整数都成成立.证明:要证证,只要要证 .因为 ,故只要证 ,即只要证 .因为,
6、所以命题得得证.本题通过化化简整理理之后,再再利用基基本不等等式由放大即可可.8、先适当当组合, 排序序, 再逐逐项比较较或放缩缩例8、.已已知i,m、n是正整整数,且且1iimn.(1)证明明:niAmiA;(22)证明明:(11+m)n(11+n)m证明:(11)对于于1iim,且AA =m(mi+1),由于mnn,对于于整数kk=1,22,i1,有有,所以(2)由二二项式定定理有:(1+m)n=1+Cm+Cm2+Cmn,(1+n)m=1+Cn+Cn2+Cnm,由(1)知知miAniA (1imn ,而CC=miCiinniCim(1mnm0C=n0C=1,mmC=nC=mn,m2Cn2C
7、,mmCnnmC,mm+1C0,mnC0,1+Cmm+Cm2+Cmn1+Cn+C2mn2+Cnm,即(1+mm)n(11+n)m成立.以上介绍了了用“放缩法法”证明不不等式的的几种常常用策略略,解题题的关键键在于根根据问题题的特征征选择恰恰当的方方法,有有时还需需要几种种方法融融为一体体。在证证明过程程中,适适当地进进行放缩缩,可以以化繁为为简、化化难为易易,达到到事半功功倍的效效果。但但放缩的的范围较较难把握握,常常常出现放放缩后得得不出结结论或得得到相反反的现象象。因此此,使用用放缩法法时,如如何确定定放缩目目标尤为为重要。要要想正确确确定放放缩目标标,就必必须根据据欲证结结论,抓抓住题目目的特点点。掌握握放缩技技巧,真真正做到到弄懂弄弄通,并并且还要要根据不不同题目目的类型型,采用用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑业营业税管理办法
- 员工社保及意外险管理暂行办法
- 工行信贷投资管理办法
- 巡察工作考核管理办法
- 安徽省计量管理暂行办法
- 缺血性心肌病诊断
- 企业待岗培训管理办法
- 乡镇农村耕地管理办法
- 2025至2030自动化光学检查设备行业产业运行态势及投资规划深度研究报告
- 云浮项目融资管理办法
- DB4401∕T 11-2018 建筑废弃物运输 车辆标志与监控终端、车厢规格与密闭
- 2025年陕西精益化工有限公司招聘笔试参考题库含答案解析
- 艺术类高中课程走班方案
- 【排放清单】省市县行业温室气体排放清单报告模板
- 出租屋孩子意外免责协议书
- 培养指导青年教师协议书
- 国家职业技术技能标准 6-28-02-01 燃气储运工 人社厅发202188号
- 12-重点几何模型-手拉手模型-专题训练
- 2024-2025学年九年级化学人教版上册检测试卷(1-4单元)
- Excel常用函数公式及技巧
- 辅警考试题《公安基础知识》综合能力测试题(附答案)
评论
0/150
提交评论